

TD 1: Révisions et compléments sur les nombres complexes

Manipulation des nombres complexes.

Exercice 1 (Inégalité triangulaire, cas d'égalité). Montrer que $|z_1 + z_2| \le |z_1| + |z_2|$ pour tous $z_1, z_2 \in \mathbb{C}$ et que si $z_1, z_2 \in \mathbb{C}^*$ on a

$$|z_1 + z_2| = |z_1| + |z_2| \iff \exists \alpha > 0, \ z_2 = \alpha z_1 \iff \operatorname{Arg}(z_1) = \operatorname{Arg}(z_2).$$

Exercice 2. Montrer que les racines complexes non-réelles d'un polynôme à coefficients réels apparaissent en paires de nombres complexes conjugués, i.e. si $P \in \mathbb{R}[X]$ et $z \in \mathbb{C} \setminus \mathbb{R}$ alors z est racine de P si et seulement si \bar{z} est racine de P et qu'alors z et \bar{z} ont la même multiplicité.

Exercice 3. Soit $\theta \in [0, 2\pi[$. Donner le module et un argument du nombre complexe $z = e^{i\theta} - 1$.

Exercice 4. Soit $\theta \in \mathbb{R}$.

- a) Calculer pour tout entier $n \in \mathbb{N}$ la somme $E_n = \sum_{k=0}^n e^{ik\theta}$.
- **b**) En déduire pour tout entier $n \in \mathbb{N}$ les sommes $C_n = \sum_{k=0}^n \cos(k\theta)$ et $S_n = \sum_{k=0}^n \sin(k\theta)$.

Exercice 5. Soient $z, w \in \mathbb{C}$ tels que $\overline{z}w \neq 1$ et tels que soit |z| = 1 soit |w| = 1. Montrer que $\left|\frac{z-w}{1-\overline{z}w}\right| = 1$.

Exercice 6. Soient $z_1, z_2, z_3 \in \mathbb{C}$ tels que $z_1 + z_2 + z_3 = 0$ et $|z_1| = |z_2| = |z_3|$. Montrer que $|z_1 - z_2| = |z_2 - z_3| = |z_3 - z_1|$. Interprétez géométriquement ce résultat.

Nombres complexes et ensembles géométriques.

Exercice 7. Représenter dans le plan complexe les ensembles suivants :

$$A = \{z \in \mathbb{C} \mid z + \bar{z} = 2\}, \quad B = \{z \in \mathbb{C} \mid \operatorname{Im} z > 2\} \quad \text{et} \quad C = \{z \in \mathbb{C} \mid \frac{\pi}{3} \leq \arg(z) \leq \frac{\pi}{2}\}.$$

Exercice 8. Soient $a \in \mathbb{C}$ et r > 0. Montrer que le point d'affixe $z \in \mathbb{C}$ est situé sur le cercle de centre d'affixe a et de rayon r si et seulement si

$$|z|^2 - \overline{a}z - a\overline{z} + |a|^2 - r^2 = 0.$$

Exercice 9. Soient $z_1, z_2 \in \mathbb{C}$ tels que $z_1 \neq z_2$.

- a) Montrer que le point d'affixe $z \in \mathbb{C}$ est situé sur la droite déterminée par les points d'affixes z_1 et z_2 si et seulement si $\frac{z-z_1}{z_2-z_1} \in \mathbb{R}$.
- b) Montrer que le point d'affixe $z \in \mathbb{C}$ est situé sur le segment dont les extrêmités sont les points d'affixes z_1 et z_2 si et seulement si $\frac{z-z_1}{z_2-z_1} \in [0,1]$, i.e. il existe $t \in [0,1]$ tel que $z=(1-t)z_1+tz_2$.

Exercice 10. Soit $f: \mathbb{C} \setminus \{-4i\} \to \mathbb{C}$ définie par $f(z) = \frac{z-2i}{iz-4}$

- a) Déterminer l'ensemble S_1 des z tels que $f(z) \in \mathbb{R}$ puis représenter graphiquement l'ensemble E_1 des points M d'affixe $z \in S_1$. Indication : que peut-on dire de $\overline{f(z)}$?
- b) Déterminer l'ensemble S_2 des z tels que $\arg(f(z)) = \frac{\pi}{2}$ puis représenter graphiquement l'ensemble E_2 des points M d'affixe $z \in S_2$.
- c) Déterminer l'ensemble S_3 des z tels que |f(z)|=2 puis représenter graphiquement l'ensemble E_3 des points M d'affixe $z \in S_3$.

\mathbb{C} versus \mathbb{R}^2 .

Exercice 11. On considère \mathbb{C} comme un \mathbb{R} -espace vectoriel (de dimension 2).

- a) Vérifier que l'application $J: \mathbb{C} \ni z \mapsto (\text{Re}(z), \text{Im}(z)) \in \mathbb{R}^2$ est un isomorphisme et préciser son inverse J^{-1} ?
- b) Soit $w = a + ib \in \mathbb{C}$. On note $\varphi_w(z) = wz$ et $\Phi_w : \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\Phi_w : J \circ \varphi_w \circ J^{\leftarrow 1}$. Vérifier que Φ_w est une application linéaire et donner sa matrice dans la base canonique de \mathbb{R}^2 .
- c) On considère maintenant C comme un C-espace vectoriel (de dimension 1).
 - i) Montrer que $\varphi: \mathbb{C} \to \mathbb{C}$ est linéaire si et seulement si il existe $w \in \mathbb{C}$ tel que $\varphi = \varphi_w$.
 - ii) Soit $\Phi \in L(\mathbb{R}^2)$ dont la matrice dans la base canonique est $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Donner une condition nécessaire est suffisante sur a,b,c,d pour que l'application $\varphi = J^{-1} \circ \Phi \circ J$ soit une application \mathbb{C} -linéaire.

Expression de l'argument. principal

Exercice 12. On veut définir une fonction de deux variables de classe C^1 qui à un point $(x,y) \neq (0,0)$ associe un argument du nombre complexe x+iy.

- a) Soit f et g les fonctions définies par $f(x,y) = \arctan\left(\frac{y}{x}\right)$ et $g(x,y) = \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right)$.
 - i) Donner les plus grand sous-ensembles de \mathbb{R}^2 sur lesquels f et g sont bien définies. Justifier rapidement qu'elles sont de classe C^1 .
 - ii) Sur quels ensembles les fonctions f et g donnent-elles un argument de x + iy?
- b) Montrer que pour tout $\theta \in]-\pi,\pi[$ on a $\tan\left(\frac{\theta}{2}\right)=\frac{\sin(\theta)}{1+\cos(\theta)}.$ En déduire une fonction de classe C^1 qui donne l'argument de z=x+iy appartenant à $]-\pi,\pi[$.