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The paper [J. Chem.Phys. 138, 224110 (2013)] is the latest in a series of attempts to write the exact molecular
wavefunction in electron-nuclear product form. We give reasons for supposing that this attempt fails to deliver
what it promises.

Attempts to write the molecular wave function in an
electron-nuclear product form are motivated by the need
to develop an electronic Hamiltonian in terms of which
molecular structure and potential energy surfaces (PES)
can be described without appealing to the mathemati-
cally vague basis (see1–3) provided by Born4 in the usual
Born-Huang5 approach. The earliest attempt was made
by Hunter6; later attempts were made by Gross7,8 using
a time-dependent formulation and the most recent one,
reverting to the time-independent form has been made
by Cederbaum9.

Of these methods only that of Hunter has been tested
on a system described by the Schrödinger Coulomb
Hamiltonian; Czub and Wolniewicz10 showed that for the
H2 molecule Hamiltonian, Hunter’s idea did not yield the
hoped for potential energy surface but rather one with
spikes in it. Later work by Cassam-Chenai11 using the
standard electronic Hamiltonian showed that the spikes
remained even though his method was close to the con-
ventional one. It is our view that the latest approaches
fail to construct an Hamiltonian that determines purely
the electronic part of the problem, and that the best that
can be done is to construct one that yields a decent ap-
proximation to a specified exact eigenstate.

Let us begin by recalling the formulation of the prob-
lem. A molecule considered as a quantum mechanical
collection of electrons and nuclei is described by the usual
Coulomb Hamiltonian H with Schrödinger equation

HΨ = EΨ, H = Hel + TN . (1)

In the Born-Oppenheimer model the eigenvector Ψ is ap-
proximated as a simple product of normalized ‘electronic’
and ‘nuclear’ wavefunctions

Ψ ≈ ϕ(r,R)χ(R), 〈ϕ|ϕ〉r = 〈χ|χ〉R = 1 (2)

where ϕ is an eigenvector of the clamped nuclei Hamilto-
nian, and χ is an eigenvector for the nuclear motion in the
potential well associated with ϕ. Can the ≈ symbol in
(2) be replaced by = with suitably redefined normalized
‘electronic’ and ‘nuclear’ functions ϕ and χ ?

First it must be said that either the centre-of-mass
(CM) contribution must be removed from H or the CM
momentum must be fixed, otherwise H has no eigenval-
ues since it describes a freely moving system. What is of

interest is the internal motion relative to the centre-of-
mass. This modification is easily made and we will in-
terpret Cederbaum’s paper9 as though it had been done;
note that in performing the separation of CM and inter-
nal motions, care must be taken to ensure that it remains
possible to group the internal coordinates in such a way
that electrons and nuclei remain identifiable.

The proposed factorization of Ψ is first discussed in
§IIA in a direct fashion in which the product ansatz
is substituted into (1) and equations for ϕ and χ are
derived9. The key point here seems to be an identifica-
tion of an ‘electronic’ contribution to the energy

Helϕ = Eel(R)ϕ (3)

with

Hel = H− h̄2

2M

(
∇ lnχ · ∇

)
(4)

and both factors, ϕ, χ supposed ‘normalized’ to unity in
the sense that

〈ϕ|ϕ〉r = 〈χ|χ〉R = 1. (5)

With this condition, and for real valued ϕ, the ‘electronic’
energy Eel(R) is

Eel(R) = 〈ϕ|H|ϕ〉r. (6)

In case ϕ is complex, H in (6) must be replaced by Hel.
In §IIB the author proposes a variational approach to

the solution of (1) that utilizes trial functions in the prod-
uct form ϕ χ. A precise formulation of the idea is as
follows; let H be the space of admissible states {Ψ}, and
E the set of eigenvalues of H. Let H0 be the subset of H
formed by vectors in the product form12 ϕ χ for admissi-
ble ϕ and χ. The admissible states are square-integrable
in all their variables, hence normalizable12. Consider the
functional9 τ : H0 ×<2 → < specified by(

(ϕ, χ); (λ, µ)
)
7→ 〈ϕ χ|H|ϕ χ〉+ λ

(
1− ||ϕ χ||2

)
+ µ

(
1− ||χ||2R

)
. (7)

Cederbaum claims that direct calculation shows that a
critical (or stationary) point of the functional τ , say(
(ϕi, χi); (λi, µi)

)
satisfies

µi = 0, ||χi||R = 1, ||ϕ(r,R)i||r = 1 (8)
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and ϕi, χi solve his equations (18a),(18b); this would im-
ply that the product ϕiχi is an eigenvector of H and λi
belongs to E .

Unfortunately there is a mistake in the calculation pre-
sented; for ease of notation, define

〈ϕ|ϕ〉r = b (9)

and note that a priori, b = b(R). The mistake is in
the passage from Cederbaum’s equation (16c) to (16d);
in the latter equation there should not be a factor of b
as a denominator of the last term in the equation. The
calculation then continues but yields only the first two
conditions in (8) above with (6) modified to read,

Eel(R) =
〈ϕ|Hel|ϕ〉r
b(R)

(10)

provided b(R) 6= 0; there is nothing in the calculation to
exclude this possibility, nor is there any longer a reason
to require b = 1 for all R.

One may reasonably ask whether this is really at all
in the spirit of the electron-nuclear separation offered by
the Born-Oppenheimer approximation; more specifically
how can the operator Hel that involves nuclear position
(through χ) and momentum variables be described as
an ‘electronic’ operator ? ϕ is not an electronic state in
the traditional sense of being the solution of a differential
equation in the electronic (r) variables with R-dependent
coefficients. In any case Hel is ill-defined when χ vanishes
somewhere.

It must also be noted that each of the functions ϕ,
χ appears in the equation for the other, and that their
defining equations are non-linear. The solution of a non-
linear equation such as (3) does not contain a disposable
multiplicative constant so that a solution of (3) satisfying
(5) simply may not exist. Most pertinently the factor-
ization is simply assumed in §IIA, and nothing is offered
in this section that leads towards a proof that it is a
valid representation of Ψ. On the other hand, while the
variational approach in §IIB may yield a factorized eigen-
vector if τ has a critical point, the existence of a critical
point is not demonstrated.

Concerning the proposed completely solvable model
based on coupled oscillators involving light and heavy
masses, it is highly pertinent to note that coupled har-
monic oscillator systems are integrable because of an un-
derlying abstract symmetry of the problem, so that an
exact solution can always be produced in a product form
by separation of variables. A system of light and heavy
particles involving Coulomb interactions does not have
this symmetry, and in general is not integrable. In our
view a comparison between the quantum mechanics of
two such systems with such different formal properties is
simply not instructive; the occurrence of light and heavy

particles in the two systems is not really relevant to a dis-
cussion of the structure of their associated eigenvectors.

One might hope to simplify Cederbaum’s scheme by
choosing at the outset one of the factors; for example we
know that the exact eigenvectors Ψi satisfy a bound de-
scribing exponential decay13,14 so one could reasonably
choose χ(R) as some exp(−f(R)) belonging to H2 that
is real and vanishes nowhere. The formalism of §IIA can
then be followed through, with now χ explicit, and the
problem reduces to the determination of ϕ(r,R); how-
ever it is quite evident that this results simply in the
complexity of the original problem (1) being transferred
to the determination of ϕ. It seems to us pertinent to
observe that every eigenvector of (1) belongs to an irre-
ducible representation of each of the invariance groups of
the molecular Hamiltonian H (angular momentum, time
and space reversal, permutation symmetry) and it is dif-
ficult to avoid the conclusion that any proposed factor-
ization of each eigenvector Ψi will involve quite distinct
‘electronic’ and ‘nuclear’ functions. Thus there would
be no clear evidence of the hierarchy of energy levels
(‘electronic’, ‘vibrational’, ‘rotational’) associated with
factorized wavefunctions of the form φelχvibηrot that
was the great success of the original work of Born and
Oppenheimer15.
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