

TD 3 : Fonctions de $\mathbb C$ dans $\mathbb C$

Exercice 1. Soit $f: \mathbb{C} \to \mathbb{C}$ holomorphe. On définit $h(z) = \overline{z}$ et $g(z) = \overline{f(\overline{z})}$.

- a) Montrer que g et h sont continues sur \mathbb{C} .
- **b)** Montrer que h n'est pas holomorphe.
- c) Montrer que g est holomorphe sur \mathbb{C} .

Exercice 2. Soient Ω un ouvert de \mathbb{C} , $f,g:\Omega\to\mathbb{C}$ deux fonctions holomorphes et $z_0\in\Omega$. On suppose que $f(z_0)=g(z_0)=0$ et $g'(z_0)\neq0$. Montrer que $\lim_{z\to z_0}\frac{f(z)}{g(z)}=\frac{f'(z_0)}{g'(z_0)}$.

Application : déterminer $\lim_{z \to i} \frac{z^{12} + 2z^2 + 1}{z^8 - 1}$.

Exercice 3 (Fonction racine carrée complexe). Si $z \in \mathbb{C}$ on appelle racine carrée de z tout nombre complexe w tel que $w^2 = z$.

- a) Montrer que tout nombre complexe non nul a exactement deux racines carrées. Qu'en est-il de $z=0\,?$
- **b)** Soit $\Omega \subset \mathbb{C}$ un ouvert et $g: \Omega \to \mathbb{C}$ telle que $g(z)^2 = z$ pour tout $z \in \Omega$. Montrer que si g est holomorphe alors $0 \notin \Omega$.
- c) On suppose maintenant que $\Omega \subset \mathbb{C}^*$ est un ouvert et que $g:\Omega \to \mathbb{C}$ est continue et vérifie $g(z)^2=z$ pour tout $z\in\Omega$.
 - i) Montrer que g ne s'annule pas et donner la forme de $g\left(re^{i\theta}\right)$ lorsque r>0 et $\theta\in\mathbb{R}$.
 - ii) Montrer que g est holomorphe et déterminer g'.
 - iii) Si $\mathbb{R}_+^* \subset \Omega$ que peut-on dire de $g\lceil_{\mathbb{R}_+^*}$?
 - iv) Donner un exemple de telle fonction g tel que $g\lceil_{\mathbb{R}_+^*} = \sqrt{\text{ et } g(-1)} = i$.
 - v) Donner un exemple de telle fonction g tel que $g \lceil_{\mathbb{R}_+^*} = \sqrt[r]{}$ et g(-1) = -i.

Exercice 4. Soit $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = \text{Re}(z) + i \text{Im}(z)^2$, i.e. si z = x + iy avec $x, y \in \mathbb{R}$ alors $f(z) = x + iy^2$. On considère également $\tilde{f}: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $\tilde{f}(x, y) = (\text{Re}(f(x+iy)), \text{Im}(f(x+iy)))$.

- a) Prouver que \tilde{f} est différentiable. Quelle est sa différentielle ?
- **b**) Existe t-il un ouvert non vide Ω de \mathbb{C} tel que f soit holomorphe sur U?

Exercice 5. Soient $a, b, c \in \mathbb{R}$. Pour tout $z \in \mathbb{C}$, z = x + iy avec $x, y \in \mathbb{R}$ on pose $P(z) = ax^2 + 2bxy + cy^2$.

- a) Donner une condition nécessaire et suffisante sur les nombres a,b,c pour qu'il existe f holomorphe sur \mathbb{C} vérifiant P = Re(f).
- b) La condition précédente étant supposée remplie, déterminer toutes les applications f holomorphes sur \mathbb{C} telles que $\operatorname{Re}(f) = P$.

Exercice 6. Soit $\Omega \subset \mathbb{C}$ un domaine non vide et $f: \Omega \to \mathbb{C}$ une fonction holomorphe. On pose P = Re(f) et Q = Im(f). On suppose qu'il existe $(a, b, c) \in (\mathbb{R}^3)^*$ tel que, pour tout $z \in \Omega$, on a aP(z) + bQ(z) + c = 0. Que peut-on dire de f?

Exercice 7. Soit $\Omega \subset \mathbb{C}$ un domaine non vide et $f : \Omega \to \mathbb{C}$ une fonction holomorphe.

- a) Montrer que si f est à valeurs réelles alors f est constante.
- b) Montrer que les propriétés suivantes sont équivalentes :
 - i) f est constante.
 - ii) P = Re(f) est constante.
 - iii) $Q = \operatorname{Im}(f)$ est constante.
 - iv) \overline{f} est holomorphe.
 - v) |f| est constante.
- c) Soient $f,g:\Omega\to\mathbb{C}$ deux fonctions holomorphes telles que |f(z)|=|g(z)| pour tout $z\in\Omega$. Montrer que si f ne s'annule pas alors il existe $\alpha\in\mathbb{R}$ tel que $f(z)=\mathrm{e}^{\mathrm{i}\alpha}g(z)$ pour tout $z\in\Omega$.
- **d**) Soient $f, g: \Omega \to \mathbb{C}$ deux fonctions holomorphes telles que g ne s'annule pas et $f(z)\overline{g(z)} \in \mathbb{R}$ pour tout $z \in \Omega$. Montrer qu'il existe $c \in \mathbb{R}$ tel que f(z) = cg(z) pour tout $z \in \Omega$.

Exercice 8. Si $f: \mathbb{C} \to \mathbb{C}$ on définit $P,Q: \mathbb{R}^2 \to \mathbb{R}$ par $P(x,y) = \operatorname{Re}(f(x+iy))$ et $Q(x,y) = \operatorname{Im}(f(x+iy))$ de façon à ce que f(x+iy) = P(x,y) + iQ(x,y). Lorsqu'elles existent on pose alors $\frac{\partial f}{\partial x}(x+iy) = \frac{\partial P}{\partial x}(x,y) + i\frac{\partial Q}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x+iy) = \frac{\partial P}{\partial y}(x,y) + i\frac{\partial Q}{\partial y}(x,y)$. Enfin on définit

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \quad \text{et} \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right).$$

- a) Calculer $\frac{\partial f}{\partial z}$ et $\frac{\partial f}{\partial \overline{z}}$ pour chacune des fonctions suivantes : $f_1(z) = z$, $f_2(z) = \overline{z}$, $f_3(z) = z^2$, $f_4(z) = \overline{z}^2$.
- **b**) Soit Ω un ouvert de $\mathbb C$ et $f:\Omega\to\mathbb C$. Montrer que f est holomorphe si et seulement si $\frac{\partial f}{\partial\overline{z}}=0$. Calculer alors $\frac{\partial f}{\partial z}$.
- c) Soient $f, g : \mathbb{C} \to \mathbb{C}$ de classe C^1 . Déterminer $\frac{\partial fg}{\partial \overline{z}}$.
- **d**) Soient $m, n \in \mathbb{N}$. Calculer $\frac{\partial (z^m \overline{z}^n)}{\partial \overline{z}}$. On pourra commencer par traiter les cas m = 0 ou n = 0.
- e) Soit $f: \mathbb{C} \to \mathbb{C}$ holomorphe. Montrer que les parties réelles et imaginaires P et Q sont des polynômes en x, y si et seulement si f est une fonction polynôme en z.