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Abstract

For semiclassical Schrödinger 2 × 2-matrix operators, the symbol of which has
crossing eigenvalues, we investigate the semiclassical Mourre theory to derive bounds
O(h−1) (h being the semiclassical parameter) for the boundary values of the resol-
vent, viewed as bounded operator on weighted spaces. Under the non-trapping
condition on the eigenvalues of the symbol and under a condition on its matricial
structure, we obtain the desired bounds for codimension one crossings. For codimen-
sion two crossings, we show that a geometrical condition at the crossing must hold
to get the existence of a global escape function, required by the usual semiclassical
Mourre theory.

Keywords: Schrödinger matrix operators, eigenvalues crossing, semiclassical resol-
vent estimates, semiclassical Mourre method, global escape function.

1 Introduction.

In this paper, we consider semiclassical Schrödinger operators with 2×2-matrix potential.
Under general assumptions, they are self-adjoint, have continuous spectrum on the posi-
tive real axis, and, away from the pure point spectrum, their resolvents admit boundary
values on this half-axis, as bounded operators on suitable weighted spaces. Our purpose
is to find sufficient conditions to show that these resolvents are O(h−1), where h is the
semiclassical parameter.
Our main motivation for this kind of estimates is the semiclassical scattering theory
for molecules and, in particular, the question of the accuracy of the Born-Oppenheimer
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approximation in this context. Matrix potentials are a convenient simplification of Born-
Oppenheimer effective potentials, which are operator-valued (see [Jec]). Semiclassical
estimates of relevant objects in scattering theory may be deduced from these resolvent
estimates (see [W1, RT]).
Using the semiclassical Mourre commutator method (see [Mo]), these resolvent estimates
follow from non-trapping conditions on associated classical dynamics in the scalar case
(see [GM, Kl]), the bound O(h−1) being in this case a signature for non-trapping dynamics
(see [W2]), and in the present case when the modes, i.e. the eigenvalues of the symbol of
the operators, cross nowhere (see [Jec]). Therefore we want to study crossing modes and
it is natural to try to adapt Mourre’s method.
As far as the modes’ crossing is concerned, we do not want to cover all cases, but our
choices, inspired by [Ha], are not too restrictive. The first one, that we call Codimension 1
crossings, is of particular interest for the Born-Oppenheimer approximation for diatomic
molecules. In this case, we manage to derive the expected bounds from non-trapping
assumptions on the modes (see Theorem 2.4), provided some condition on the spectral
subspaces of the symbol holds true. In contrast to [Jec], the proof is more complicated
here, because, roughly speaking, the two modes do not decouple and we had to solve a
nonlinear problem related to this fact. The condition on the spectral subspaces, which
is independent with the non-trapping condition on the modes, enables us to construct
global solutions of the nonlinear problem. For our second type of crossings, we have a
negative result: the usual Mourre method (see Section 3) cannot apply (even under the
previous non-trapping conditions), if some geometrical condition at the crossing does not
hold. Although it is only an obstruction to Mourre method, we have some reasons to
believe, the latter being also a trapping phenomenon at the crossing (that cannot be ex-
pressed in terms of the dynamics of the modes since they may break down there), which
excludes the desired resolvent estimates (see Remark 2.7). If a strengthed version of the
geometrical condition hold, we show in some weak sense that this trapping phenomenon
at the crossing does not occur (see Proposition 2.8), but we were not able to derive the
resolvent estimates under the previous non-trapping assumptions.
It is interesting to compare our present work with a part of [Ha] (see Section 2) and with
[FG], although the full evolution is not considered there. In a different way, the present
paper is complementary to [Ne1, Ne2].
Before ending this introduction, we want to mention an interesting comment by C. Grard
on the subject. He regrets that we did not use a flow directly constructed from the symbol
of the operator (via its Liouvillean). We did try but could not overcome the problem of
non-commutation of matrix symbols.
In Section 2, we precisely present the frame in which we shall work, the assumptions we
need, and the announced results, followed by some comments. In Section 3, we review the
general strategy known as semiclassical Mourre method, that we follow here. Then we
focus on the problem of constructing a global escape function, a key point in our strategy.
Codimension 1 crossings are treated in Section 4 while Codimension 2 ones are considered
in Section 5. Finally, some useful facts are collected in the appendix.

Acknowledgment: the author thanks, for fruitful discussions and advices, V. Bach, Y.
Colin de Verdire, C. Grard, G. Hagedorn, A. Joye, N. Lerner, A. Martinez, G. Mtivier,
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2 Notation and results.

First of all, let us introduce the Schrödinger 2× 2 matrix operator we want to study. For
some integer n ≥ 2, we consider the semiclassical operator

P̂ := −h2∆xI2 +M(x) (1)

acting in L2(Rn; C2), where h is the semiclassical parameter (h ∈]0;h0] for some h0 > 0),
∆x denotes the Laplacian in Rn, I2 is the 2 × 2 identity matrix, and where M(x) is the
multiplication operator by a real symetric 2× 2 matrix M(x). We require that M is C∞

on Rn and that there exist some δ > 0 and some real symetric matrix M∞ such that

∀α ∈ Nn , ∀x ∈ Rn ,
∥∥∥∂α

x

(
M(x)−M∞

)∥∥∥ = Oα

(
〈x〉−δ−|α|

)
(2)

where ‖ · ‖ denotes the operator norm on the 2 × 2 matrices and 〈x〉 = (1 + |x|2)1/2.
It is well known that, under this assumption on M , the operator P̂ is self-adjoint on
the domain of the Laplacian (see [RS2] for instance). Its resolvent will be denoted by
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R(z) := (P̂ − z)−1, for z in the resolvent set of P̂ (we omit the h-dependence). If, for
s ∈ R, we denote by L2

s(Rn; C2) the weighted L2 space of mesurable, C2-valued functions
f on Rn such that x 7→ 〈x〉sf(x) belongs to L2(Rn; C2), then it follows from Mourre theory
that this resolvent has boundary values R(λ± i0) as bounded operators from L2

s(Rn; C2)
to L2

−s(Rn; C2), for any s > 1/2 and λ outside the pure point spectrum of P̂ (in fact, we
partially prove here this property again).

The operator P̂ is a h-pseudodifferential operateur obtained by Weyl quantization of the
following symbol, defined on T ∗Rn with values in the real symetric 2× 2 matrices,

P (x, ξ) := |ξ|2I2 +M(x) . (3)

Notice that M(x) = u(x)I2 + V (x) where u(x) is 1/2 times the trace of M(x) and

V (x) :=

(
v1(x) v2(x)
v2(x) −v1(x)

)

for smooth real functions v1 and v2. The eigenvalues of V (x) are ±ρ(x) with ρ(x) =
(v1(x)

2 + v2(x)
2)1/2 = (−detV )1/2 (detV being the determinant of V ) and we denote by

Π±(x) the associated eigenprojectors. While Π± = I2 if ρ = 0, we have, for ρ 6= 0,
Π± = (I2 ± V/ρ)/2. Similarly we introduce the corresponding notation for M∞, namely
u∞, V∞, v1,∞, v2,∞, and ρ∞. We also define the scalar function on the phase space
p(x, ξ) := |ξ|2 + u(x), which is 1/2 times the trace of the symbol P . Then the eigenvalues
of P are p±(x, ξ) := p(x, ξ)± ρ(x). Notice that p+(x, ξ) = p−(x, ξ) ⇐⇒ ρ(x) = 0. We
denote by C (resp. C∗) the zero set of ρ (or V ), viewed in Rn (resp. T ∗Rn), that is the
crossing set of the eigenvalues of P . The functions p± and p are smooth functions at least
on T ∗Rn \ C∗ thus generate Hamilton flows on this set. For any Hamilton function q, we
shall denote by Hq its Hamilton field and by φt

q its Hamilton flow at time t. The following
non-trapping condition on Hamilton flows and connected notion of global escape function
(see [DG]) will play an important rôle in this paper.

Definition 2.1. A smooth, real function q defined on an open subset U∗ of some cotangent
bundle (T ∗Rn or T ∗C ) is said to be non-trapping on some set U∗

1 ⊂ U∗ at energy λ if,
for any point α ∈ U∗

1 ∩ q−1(λ), the evolution of α, according to the Hamilton flow φt
q of

q, in both time directions, leaves any compact subset of U∗ ∩ q−1(λ), that is

∀α ∈ U∗
1 ∩ q−1(λ), ∀K ⊂⊂ U∗ ∩ q−1(λ), ∃T > 0; |t| ≥ T =⇒ φt

q(α) 6∈ K .

The largest open set U∗
1 satisfying the previous condition and U∗ \ U∗

1 are respectively the
non-trapping and trapping region of q at energy λ. A trajectory {φt

q(α), t ∈ R} of q is
trapped if one of the sets {φt

q(α), t ∈ R+} and {φt
q(α), t ∈ R−} is bounded.

A smooth, real function a defined on some cotangent bundle (T ∗Rn or T ∗C) is an escape
function on U∗

1 for q at energy λ if there exists some c > 0 such that

∀α ∈ U∗
1 ∩ q−1(λ), {q, a}(α) ≥ c ,

where {·, ·} denotes the usual Poisson bracket.
Notice that we can replace q−1(λ) by q−1(]λ− ε0;λ+ ε0[) for ε0 > 0 small enough without
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changing the above definitions.
If U∗

1 = U1 × Rn for some subset U1 of Rn, we also say that q is non-trapping on U1

and that a is an escape function on U1. If U∗
1 = U∗ or U1 = U , we simply say that q is

non-trapping at energy λ and that a is a global escape function for q at energy λ.

We shall indeed use such global escape function for scalar Hamilton functions like p but,
to avoid difficulties at C∗, we need a generalized version for the matricial symbol P , given
in the following definition and suggested by A. Martinez.

Definition 2.2. A smooth function A on T ∗Rn, valued in the 2×2 real symetric matrices,
is an escape function for the matricial symbol P at energy λ on a subset U∗ of T ∗Rn (resp.
on a subset U of Rn) if there exist a function θ ∈ C∞

0 (R; R), with θ = 1 near λ, and some
c > 0 such that, in the matrix sense of the order ≥, the “classical” Mourre estimate

θ(P ) {P,A} θ(P ) ≥ c θ(P )2 (4)

holds true on U∗ (resp. U × Rn), where {·, ·} denotes the Poisson bracket for matrix
symbols (see (14)), and if the matricial commutator [P,A] vanishes on U∗ ∩ supp θ(P )
(resp. (U × Rn) ∩ supp θ(P )).
If U∗ = T ∗Rn or U = Rn, we say that A is a global escape function for P at energy λ.

Let us precise the energy localization in Definition 2.2. It corresponds to the support of
a matrix-valued function θ(P ) (θ being as in Definition 2.2). By the functional calculus
for real symetric matrices, this support is given by

supp θ(P ) =
{
α ∈ T ∗Rn; ∃µ ∈ supp θ; det

(
P (α)− µI2

)
= 0

}
.

It is thus natural to consider the open set

E(λ, ε0) :=
⋃

µ∈]λ−ε0;λ+ε0[

{
α ∈ T ∗Rn; det

(
P (α)− µI2

)
= 0

}
, (5)

for some ε0 > 0, as an energy localization near λ. The energy shell of P of energy λ is
defined as E(λ) := {α ∈ T ∗Rn; det

(
P (α)− λI2

)
= 0}.

Notice that [P,A](α) 6= 0 implies [P,A](α) has a negative eigenvalue, since its trace is
0. Since we want to derive some positivity of [P̂ , Â] by the sharp G̊arding inequality, we
require [P,A] = 0 on supp θ(P ).
It is straighforward to verify that, under (2) and for λ > ‖M∞‖, the “classical” Mourre
estimate (4) holds true for the scalar function A∞ defined by

∀(x, ξ) ∈ T ∗Rn, A∞(x, ξ) := a∞(x, ξ) I2 := x · ξ I2 , (6)

provided |x| is large enough. If λ > ‖M∞‖ is large enough, this function is even a global
escape function for P at energy λ.
To use the semiclassical Mourre method, we demand that the global escape function
belongs to some class of semiclassical symbols. In fact, it suffices to require (see [GM],
[Jec]) that, for |x| large enough, the global escape function coincides withA∞. In Section 3,
we shall derive (almost as in the scalar case) the following
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Theorem 2.3. Assume that the symbol P satisfies (2) and let λ be some real number
such that there exists some global escape function for P at energy λ, which is equal to
A∞ (cf. (6)) for |x| large enough, then, for any s > 1/2, the boundary values of the
resolvent satisfy the estimates R(λ± i0) = Os(h

−1) as bounded operators from L2
s(Rn; C2)

to L2
−s(Rn; C2).

In the scalar case (cf. [GM]) (resp. the matricial case without crossing (cf. [Jec])), these
resolvent estimates hold true under a non-trapping condition at energy λ on the symbol
P of the operator (resp. the eigenvalues of P ). Furthermore, it is also known, in the
scalar case, that this non-trapping condition is necessary (cf. [W2]). What we are trying
to understand in this paper is: under which condition can we apply Theorem 2.3 to P , if
its eigenvalues cross somewhere?

We refer to [Ha] for the description of the different types of crossing that may appear
and focus here on two important ones. In each case, we demand that C is a smooth
submanifold of Rn, while its codimension in Rn depends on the type. Since the results
will be different for these two types, we shall present them together with the corresponding
result concerning the existence of a global escape function.

Codimension 1 crossing: We assume that C is a submanifold of Rn of codimension one.
More precisely, we demand that there exists some scalar C∞ function τ and some C∞

function Ṽ , valued in the traceless, real, symetric matrices (i.e. like V ), such that V = τ Ṽ
in some vicinity of C, that ρ̃ := (−detṼ )1/2 and the gradient of τ does not vanish on the
zero set of τ , which is C. Finally, in view of (2), we require that there exist ε, C0 > 0 and
some real symetric matrix Ṽ∞, with ρ̃∞ := (−detṼ∞)1/2 > 0, such that

∀α ∈ Nn,∀x ∈ Rn, ρ(x) < ε =⇒ |∂α
x τ(x)|+

∥∥∥∂α
x (Ṽ (x)− Ṽ∞)

∥∥∥ = Oα

(
〈x〉−δ−|α|

)
. (7)

We point out that (7) is in fact an assumption at infinity near C, since it holds auto-
matically true, if C is compact, under the previous assumptions. If C is not compact,
then V tend to 0 at infinity by (2), so this assumption says that, near the crossing, the
convergence of V to 0 is due to the convergence of τ to zero, while the matrix structure
of V tends to some invertible matrix Ṽ∞. Notice further that the difference ρ̃ − ρ̃∞ also
satisfies the estimates (7).

Among the Codimension 1 crossings, there is the following radial situation, which contains
the case of Born-Oppenheimer diatomic molecules with crossing.

Radial potential with crossing: We assume that M is a radial function (depending only
on |x|) and that C is the sphere of Rn centered at 0 with radius r0 > 0. We demand
further that the gradients of v1 and v2 do not vanish on C.

Using a Taylor expansion with rest integral near r0, we see that this is a Codimension 1
crossing, if we choose τ(x) = |x| − r0 near C. Notice that C could be a finite union of
spheres centered at 0.

Let us return to general Codimension 1 crossings. Notice that, at C∗, the eigenvalues
p± = p ± |τ |ρ̃ and their associated eigenprojectors are not smooth. But one can easily
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regularize the situation (cf. [K]). Denoting by C∗± the regions of T ∗Rn where ±τ > 0, we
define two new functions p̃± on T ∗Rn by p̃± = p± on C∗+, p̃± = p∓ on C∗−, and p̃± = p on

C∗. Similarly, we set Π̃±(x) = Π±(x) on C∗+ and Π̃±(x) = Π∓(x) on C∗−. Since p̃± = p± τ ρ̃
and Π̃± = (I2 ± Ṽ /ρ̃)/2 near C∗, these functions are smooth everywhere and, by (7),

∀α ∈ Nn,∀x ∈ Rn, ρ(x) < ε =⇒
∥∥∥∂α

x (Π̃±(x)− Π̃±,∞)
∥∥∥ = Oα

(
〈x〉−δ−|α|

)
, (8)

where Π̃±,∞ = (I2± Ṽ∞/ρ̃∞)/2. We just have changed the numbering of the eigenvalues in
order to get smooth ones and smooth eigenprojectors. For convenience, we may assume
that, for ρ(x) ≥ ε and ±τ(x) > 0, τ(x) = ±ρ(x) and τ(x)Ṽ (x) = V (x). Our first main
result, proved in Section 4, is the following

Theorem 2.4. Assume that the symbol P satisfies (2) and let λ > ‖M∞‖, the operator
norm of M∞. Assume that the Hamilton functions p̃± are non-trapping at energy λ. Then
there exists κ > 0 such that, if ‖〈x〉1+δ(∇xΠ̃+)(x)‖ ≤ κ for all x ∈ Rn, then there exists
a global escape function for P at energy λ (cf. Definition 2.2) which equals A∞, defined
in (6), for |x| large. In particular, Theorem 2.3 applies.

At first sight, one could argue that this result should be clear, even without any condition
on ∇xΠ̃+, since one can smoothly diagonalize P and probably decouple the two levels.
This is not true and, already in [Ha] where the propagation of coherent states is studied,
one can see that the two levels do interact, however not at the leading order. In Section 4,
we shall explain why we cannot simply adapt the proof of [Jec] to the present case.
In contrast to Codimension 2 crossings (see below), the geometrical formulation of the
problem at the crossing does not predict any local obstruction to the existence of escape
function there. We really have the two degrees of freedom allowed by the commutation
condition in Definition 2.2. Fixing appropriatly one of them, attached to p̃+ for instance,
we demand that the other satisfies a nonlinear, scalar p.d.e, which reduces to an ordinary
differential equation along the flow of p̃−. Thanks to the condition on ∇xΠ̃+ (see Re-
mark 4.2), which does not depend on p̃±, the resolution of this p.d.e furnishes the second
part of the desired global escape function. The size of κ may be estimated in terms of the
time needed by the flow of p̃− to leave some compact region (see the proof of Theorem 2.4
in Section 4).
Notice that, if V = τ Ṽ everywhere with constant Ṽ , we can simplify the proof consider-
ably (see Remark 4.4) since the two levels decouple in this case.
Are the non-trapping conditions necessary to get the resolvent estimates ? If the crossing
is empty, we believe that the arguments by [W2] may be adapted successfully. This could
be probably extended to the present case for constant Ṽ near C, that is for a fixed ma-
tricial structure near the crossing. It seems impossible to remove the condition on ∇xΠ̃+

in Theorem 2.4 if we follow the present Mourre method (see Section 4). Another method
could perhaps do it, but a relevant non-trapping condition on the symbol might also be
more complicated than ours.

We come now to our second type of crossing, namely

Codimension 2 crossing: We assume that C is a submanifold of Rn of codimension two.
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More precisely, we demand that the gradients of v1 and v2 are linearly independent on C,
the intersection of their zero set.

The eigenvalues p± and their associated eigenprojectors are not smooth at C∗, in general,
and the previous regularization does not work. It turns out that the cotangent space T ∗C
of C will be important. Its fiber over some x ∈ C is defined by

T ∗xC :=
{
ξ ∈ T ∗x Rn; ξ ∈

(
Vect(∇v1(x),∇v2(x))

)⊥}
, (9)

where V(x) := Vect(∇v1(x),∇v2(x)) is the vector space spanned by the vectors ∇v1(x)
and ∇v2(x), and where V(x)⊥ is the space of linear forms vanishing on V(x). Here, we
do not view it in an intrinsic way but as a submanifold of T ∗Rn. Its importance comes
from the identity (see Appendix B)

T ∗C = {α ∈ C∗, Hp(α) ∈ TαC∗} . (10)

Furthermore, we have a special, geometrical configuration (see Appendix B). For α ∈ T ∗C,
TαC∗ = Vect(Hv1 , Hv2)⊕ TαT

∗C. According to this decomposition,

∀α ∈ T ∗C, Hp(α) =
(
µ1(α)Hv1(α) + µ2(α)Hv2(α)

)
+ Hp′(α) , (11)

for some real coefficients µ1(α), µ2(α), where p′ denotes the restriction of p to T ∗C.

The experience of the scalar case, the matrix case without crossing, and the matrix
case with codimension 1 crossing, says us that the Hamilton functions p± should be non-
trapping at the considered energy. But, assuming this, in the sense given in Definition 2.1,
is it sufficient? As discussed in Section 3, where we compare the present situation with
the one without crossing, we have to understand what happens at the crossing. To this
end, we express the problem of the existence of an escape function near the crossing
in geometrical terms. The previous geometrical situation reveals a local obstruction for
Codimension 2 crossings. To describe this obstruction, we need the following

Definition 2.5. Let λ ∈ R and α ∈ T ∗C. We say that the crossing is confining at α for
P at energy λ if α belongs to the energy shell E(λ) of P and if µ1(α)2 +µ2(α)2 ≤ 1, these
coefficients being defined in (11).

This leads to the following, negative result, proved in Section 5.

Theorem 2.6. If the crossing is confining for P at energy λ on some region in T ∗C,
which contains a trapped trajectory for p′ (at energy λ), then there exists no global escape
function for P at energy λ.

The assumptions of Theorem 2.6 imply that P cannot have a scalar escape function
near T ∗C and this also works for Codimension 1 crossings (see Appendix B). But, for
Codimension 2 crossings, the existence of a global escape function for P implies the
existence of a scalar one near T ∗C (see Appendix D), yielding Theorem 2.6.
The condition of Definition 2.5 roughly says that the component of Hp in Vect(Hv1 , Hv2)
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has a small size. Since it forbids to “escape” in the conormal direction to the crossing
near T ∗C (see the proof), it may be seen as a kind of confining condition in that direction
on the crossing w.r.t. p at the considered energy. Here we are thinking of quantum
evolution constrained to (a neighborhood of) a submanifold as in [FH], for instance. The
assumptions in Theorem 2.6 seem to describe a (quantum) capture phenomenon, that
cannot be expressed in terms of the classical Hamilton functions p+ and p−, thus to be
independent with non-trapping properties of p+ and p−.
It is not surprising that T ∗C plays a central rôle for the existence of a global escape
function if we consider the work [Ha] by Hagedorn, where the evolution of coherent states
through eigenvalues crossing, with transversal impuls at the crossing, does not reveal any
capture phenomenon. He had to avoid the non-generic situation of a tangent impuls that
we have to take into account here, since we work on the full resolvent, and that precisely
corresponds to considering a point in T ∗C.

Remark 2.7. In the situation of Theorem 2.6, we do not know if the resolvent estimates
of Theorem 2.3 hold. However we would not be surprised if they would not hold and
that resonances would run rapidly (faster than h) to the real axis as h goes to 0. A
corresponding resonant state could be essentially a tensor product of a microlocally confined
state in the conormal direction to the crossing and of an eigenstate on T ∗C (under some
kind of Bohr-Sommerfeld quantization condition). Technics from [GS] and [FH] may be
useful to deal with this question. At least, there is a positive answer by [Ne1]. Notice
that [Ne2] predicts the presence of resonances near λ in the present situation but does not
describe semiclassically their width.

Now it is natural to ask what happens when the obstruction does not occur. Is there
a global escape function, if we assume further that p+ and p− are non-trapping at the
considered energy? Unfortunately, we did not succeed in finding a complete answer to
this question. However, our previous geometrical analysis allows us to exhibit sufficient
conditions (almost converse to the assumptions of Theorem 2.6), under which there are
(scalar) escape functions near the crossing (see Proposition 2.8 below). Maybe these con-
ditions, together with the non-trapping condition on p+ and p−, are sufficient to construct
a global escape function. We could not prove this using Proposition 2.8, since it is rather
difficult to transform an escape function on some quite arbritary region into a global one.

Proposition 2.8. Assume that the symbol P satisfies (2) and let λ > ‖M∞‖, the operator
norm of M∞. If one of the following two conditions

1. the restriction p′ of the half-trace p of P to T ∗C is non-trapping at energy λ,

2. there is no α ∈ T ∗C at which the crossing is confining for P at energy λ,

holds true then there exists a smooth, scalar function A, which is an escape function for
P at energy λ on C∗ and which equals A∞, for |x| large.

In fact, we first show that there is an escape function near T ∗C and then add appropriately
some function to get an escape function near C∗.
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Assumption 1 in Proposition 2.8 allows us to construct a global escape function for p′ on
T ∗C (as in [GM]), that we extend to an escape function for P near T ∗C. Notice that this
assumption implies that C is not compact.
Under Assumption 2 in Proposition 2.8, we can construct explicitly an escape function
and really use conormal directions to C∗ to “escape”.
It is interesting to compare this result with the case where λ is very large, for which we
have a global escape function, namely A∞. If C is given by {x1 = x2 = 0} in R3, the
kinetic energy is concentrated “along the crossing” so that 1 is true and 2 is false if u is
constant on C. Now, if C is a circle in R3, then 1 cannot be true but one can verify that
2 holds true.
In order to exhibit clearly the relevant properties on which this result is based, we did not
really optimize the assumptions. In fact, if C is not compact, we can relax them as shown
in Remark 2.9 below. This comes from the fact that we have roughly two independent
escape directions, one cotangent the crossing and one conormal to the crossing. If one is
not practicable somewhere, we can follow the other. This leads to the following refinement
of Proposition 2.8, proved in Section 5.

Remark 2.9. Assume that the symbol P satisfies (2) and let λ > ‖M∞‖. If the crossing
is not confining for P at energy λ on some vicinity of the (closed) trapping region of p′

at energy λ then there exists some scalar escape function for P at energy λ on C∗, which
equals A∞ for |x| large.

3 Semiclassical Mourre method.

In this section, we describe the semiclassical Mourre method which leads to a proof of
Theorem 2.3. We also review semiclassical resolvent estimates in the scalar case (cf.
[GM, W2]) and in the matrix case without crossing (cf. [Jec]). A new proof of the latter
case will be sketched to enlighten the present situation.

The semiclassical Mourre method for the operator P̂ (defined in (1)) consists in seeking
a so called conjugate operator which will be a h-pseudodifferential operator Â (the Weyl
h-quantization of some symbol A) that “coincide” with the generator of dilations (i.e.
A = A∞), for |x| large, and satisfies two conditions. Firstly, we should have, for the
energy λ that we consider, the existence of some function θ ∈ C∞

0 (R; R), with θ = 1 near
λ, and some c > 0 such that,

θ(P̂ ) i[P̂ , Â] θ(P̂ ) ≥ c · h · θ(P̂ )2 . (12)

Here [·, ·] denotes the commutator of (unbounded) operators. Secondly, we need that the
double commutator [[P̂ , Â], Â] is P̂ -bounded and that[

θ(P̂ )[P̂ , Â]θ(P̂ ), Â
]
(P̂ + i)−1 = O(h) . (13)

A bound O(h2) is usually required (see [Jec]) since it directly holds in the scalar case. But
in the matrix case, we do not expect in general such a bound because of commutation
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problems. Fortunately, if we carefully follow Mourre’s arguments (cf. [Mo]), the bound
in (13) suffices (see [W2]) to get the desired semiclassical resolvent estimates.
To get (12), we can use the sharp G̊arding inequality, as usual, since it works for matricial
symbols, as pointed out in [H]. For convenience, we sketch a proof in Appendix A, which
is the matricial version of an elegant proof indicated to us by A. Martinez.
By the functional calculus of B.Helffer and J.Sjöstrand (see [HS, DG]), the energy lo-
calization operator θ(P̂ ) is a h-pseudodifferential operator with principal symbol θ(P ).
Therefore, the principal symbol of the r.h.s. of (12) is θ(P )[P,A]θ(P ) ([·, ·] denoting here
the matricial commutator), according to the composition formula for h-pseudodifferential
operators (see [Ro]). Since [P,A] is traceless, it has opposite eigenvalues, thus [P,A] ≥ 0
implies [P,A] = 0. This explains the commutation condition required in Definition 2.2
(which is trivially realized in the scalar case), that we also use to get (13). Under this
condition, the principal symbol of ih−1[P̂ , Â] is, using the previous composition rule,

{P,A} :=
1

2

(
(∇ξP · ∇xA−∇ξA · ∇xP )− (∇xP · ∇ξA−∇xA · ∇ξP )

)
, (14)

=
1

2

(
(∇ξP · ∇xA−∇xP · ∇ξA) + (∇xA · ∇ξP −∇ξA · ∇xP )

)
.

In the scalar case, we recognize the usual Poisson bracket.

Proof of Theorem 2.3: As conjugate operator we choose the Weyl h-quantization Â
(see Appendix A) of the global escape function A (here we use the fact that A = A∞ for
large enough |x|). Let θ, θ′ ∈ C∞

0 (R; R) with θ′ = θ = 1 near λ and satisfying θθ′ = θ,
and assume the properties of Definition 2.2 for θ′. Thanks to [P,A] = 0 on supp θ′(P ),
the principal symbol of θ′(P̂ )ih−1[P̂ , Â]θ′(P̂ ) is θ′(P ){P,A}θ′(P ). By (4), this matricial
symbol is bounded below by c′θ′(P )2, for some c′ > 0. Now, by the sharp G̊arding
inequality for the bounded, non-negative symbol θ′(P ){P,A}θ′(P )− c′θ′(P )2,

θ′(P̂ ) ih−1[P̂ , Â] θ′(P̂ ) ≥ c′ · θ′(P̂ )2 − O(h) ,

which, after left and right multiplication by θ(P̂ ), yields the Mourre estimate (12) for
c = c′/2 > 0 and h small enough. The double commutator is seen to be P̂ -bounded
thanks to assumption (2) and, since P and A commute on supp θ(P ), (13) holds true. We
can then use Mourre’s arguments (cf. [Mo]), following the h-dependence, to obtain the
desired result (see also [W2]).

As remarked in [Jec], the main problem is then to construct a global escape function for P
at energy λ. Let us review some situations where the resolvent estimates of Theorem 2.3
have already been obtained.
In the scalar case, the previous Mourre method was successfully followed by C.Grard and
A.Martinez in [GM], and then by X.P. Wang (in a more general setting in [W2]), under
the non-trapping condition for the symbol at the considered energy. In this case, there is
a natural way, given in [GM], to construct a global escape function a: let g ∈ C∞

0 (T ∗Rn)
with 0 ≤ g ≤ 1 and g = 1 on a large bounded domain D∗ ⊂ p−1(λ). To construct a
in D∗, we set {p, a} = g and compose on both sides with the flow φt

p. This leads to
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(d/dt)(a◦φt
p) = g ◦φt

p pointwise in T ∗Rn. By the non-trapping condition, this can be
integrated as

a◦φt
p = −

∫ ∞

t
g◦φs

p ds , (15)

which gives a for t = 0. To exhibit a global escape function, which agrees with a∞ for |x|
large, we combine appropriatly a and a∞ (see Proposition 3.1 below).
On a formal level, we can reproduce this in the matricial case, if we replace the classical
flow by the propagator of the Liouvillean {P, ·} of P , but we do not see how to ensure
the commutation condition required in Definition 2.2.
In [Jec], the matrix case without crossing was studied and we avoided global escape
function for P but our method gave the impression that the conjugate operator should
be scalar. This condition is irrelevant and let us extract the real basis of the proof.
The initial idea was to seek a conjugate operator of the form F = Π+â+Π+ + Π−â−Π−,
where Π±(x) are the eigenprojectors of V (x) associated to the eigenvalues ±ρ(x) and
where a±(x, ξ) are scalar symbols, and to reduce the commutator [P̂ , F ] to scalar ones,
involving p+ and p−, leading to the condition that a± is a global escape function for p± at
energy λ. On this way, we met the condition a+ = a− to cancel some uncontrolled term.
Since the energy shells p−1

+ (λ) and p−1
− (λ) are disjoint, we were able to construct such

an operator by glueing together different functions a+ and a−, which were global escape
functions for p+ and p−, respectively.
This construction seems artificial. From this, we learn that it may be simplier to work
on symbols rather than on operators, that the scalarness of F is irrelevant, and that the
basis of the proof is the separation of the energy shells. The latter can be expressed by
θ(p+)θ(p−) = 0 for a function θ as in Definition 2.2 with small enough support. Indeed
we can rewrite the proof along the following lines. Choosing A = a0I2 + a1V for scalar,
smooth functions a1 and a2 (recall that we have to ensure [P,A] = 0), we have

θ(P ){P,A}θ(P ) = θ(p+)2{p+, a+}Π+ + θ(p−)2{p−, a−}Π− + θ(p+)θ(p−)B , (16)

where B is some matrix (roughly the previous uncontrolled term), a± = a0±a1ρ. Choosing
the support of θ small enough, the last term vanishes. Choosing a+ (resp. a−) as a global
escape function for p+ (resp. p−) at energy λ, with a+ = a∞ (resp. a− = a∞) for |x|
large, we get the “classical” Mourre estimate (4). Since ρ does not vanish, we can recover
a0, a1 from a+ and a−. Theorem 2.3 gives now the desired resolvent estimates.
In the present situation (C 6= ∅), the intersection of the energy shells p−1

+ (λ) and p−1
− (λ)

is not empty and is included in C∗. We thus have to understand the effect of this on the
construction of global escape functions.
However, to derive a global escape function from an escape function on some compact
region in x, we are able to adapt the idea in [GM]. For R > 0, we set

BR := {x ∈ Rn; |x| < R} and B∗
R := BR × Rn . (17)

Proposition 3.1. Assume that we have a smooth function A, which is bounded on E(λ; ε0)
(cf. (5)) for ε0 > 0 small enough, such that, for R > 0 large enough, it is an escape
function for P at energy λ on BR. Then, we can find a smooth function Ã, which coincides
with A∞ for |x| large enough, and which is a global escape function for P at energy λ.
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Proof: Let R1 > 0 be large enough to have the assumption for R1 and large enough
so that there exists some c0 > 0 such that {P,A∞} ≥ c0I2 on E(λ; ε0) \ B∗

R1
. Let

Ã := A∞ + dχA with χ ∈ C∞
0 (Rn; R), 0 ≤ χ ≤ 1, χ = 1 on BR1 , and with d > 0 large

enough to ensure
sup

B∗
R1
∩E(λ;ε0)

∥∥∥{P,A∞}
∥∥∥ < d c1 ,

where c1 is given by the assumption for R1 (i.e. {P,A} ≥ c1I2 on B∗
R1
∩ E(λ; ε0)). Since

{P, χ} is scalar, we have

{P, Ã} = {P,A∞} + d{P, χ}A + dχ{P,A} . (18)

Then, on E(λ; ε0) ∩ B∗
R1

, {P, Ã} ≥ c′1I2, for some c′1 > 0. Now, we choose the vari-
ation of χ such that, on E(λ; ε0), ‖d{P, χ}A‖ ≤ c0/2. Let R > R1 be large enough
such that suppχ ⊂ BR. On E(λ; ε0) ∩ B∗

R, for c > 0 given by the assumption for
R, dχ{P,A} ≥ dχcI2 ≥ 0, thus {P, Ã} ≥ min(c′1, c0/2)I2. Finally {P, Ã} ≥ c0I2 on
E(λ; ε0) \B∗

R and Ã coincides with A∞ for |x| ≥ R.

4 Codimension 1 crossings.

This section is devoted to the proof of Theorem 2.4. In other words, we are going to
construct a global escape function for P for Codimension 1 crossings.

According to the discussion in Section 3, we should look at the situation at the crossing. In
fact, one can make the same geometrical analysis near C∗ or rather T ∗C as for Codimension
2 crossing (see Appendix B). Since, locally on T ∗C, the existence of an escape function
does not imply the existence of a scalar one, as for Codimension 2 crossings, we do not
expect that the geometrical situation at T ∗C produces a local obtruction as in Section 5.
However, this situation does produce such an obstruction to the existence of a scalar
escape function at T ∗C (as shown in Appendix B). So we really have to exploit the
two degrees of freedom given by the commutation condition, namely look for a function
A = a0I2 +a1Ṽ = a+Π̃+ +a−Π̃− (so that [A, V ] = 0 everywhere) with eventually non-zero
a1. Furthermore, like in Section 3, we have

{P,A} = {p̃+, a+}Π̃+ + {p̃−, a−}Π̃− (19)

+ 2ρ̃
(
2a1ξ − τ(∇ξa0)

)
·
(
Π̃+(∇xΠ̃+)Π̃− + Π̃−(∇xΠ̃+)Π̃+

)
,

but this time we cannot eliminate the last term by energy localization. Unless this term
is zero (this is the case if ∇Π̃+ = 0 everywhere, that is for a fixed matricial structure of
V , see Remark 4.4 below), we need to control it.
By energy localization, if we ensure the positivity of {p̃±, a±} on p̃−1

± (λ), we need the
positivity of (19) on p̃−1

+ (λ) ∩ p̃−1
− (λ). Recall that τ is small on this region and, since we

are looking for a function A that coincides with A∞ for |x| large, the term containing τ in
(19) should be uniformly a O(|τ |). So it is reasonable to neglect it. For all (x, ξ) ∈ T ∗Rn,
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let f±(x) ∈ C2 be a normalized vector generating the range of Π̃±(x) and let ψ(x, ξ) =
〈f−(x), (2ξ ·∇xΠ̃+(x))f+(x)〉 ∈ C where 〈·, ·〉 denotes the usual scalar product in C2. The
positivity of the matrix

{P,A}′ := {P,A} + 2ρ̃τ(∇ξa0) ·
(
Π̃+(∇xΠ̃+)Π̃− + Π̃−(∇xΠ̃+)Π̃+

)
(20)

= {p̃+, a+}Π̃+ + {p̃−, a−}Π̃− + 4a1ρ̃ξ ·
(
Π̃+(∇xΠ̃+)Π̃− + Π̃−(∇xΠ̃+)Π̃+

)
on p̃−1

+ (λ) ∩ p̃−1
− (λ), is garanteed by {p̃+, a+} > 0 on p̃−1

+ (λ) and

{p̃+, a+} {p̃−, a−} > |ψ|2 (a+ − a−)2 (21)

on p̃−1
+ (λ)∩ p̃−1

− (λ), since a1ρ̃ = (a+−a−)/2. So, if we require {p̃+, a+} > 0 on p̃−1
+ (λ) and

r0 {p̃−, a−} > |ψ|2 (a+ − a−)2 (22)

on p̃−1
− (λ), for some positive function r0 which coincides with {p̃+, a+} on p̃−1

+ (λ)∩ p̃−1
− (λ),

we get the “classical” Mourre estimate (4), locally in x, if the neglected term is really
small enough.
We see that we have to deal with a nonlinear problem. Given a global escape function a+

for p̃+, we try to solve for a− the following nonlinear p.d.e.

r0 {p̃−, a−} = |ψ|2 (a+ − a−)2 + rr0 , (23)

on p̃−1
− (λ) for positive functions r, r0, with r0 = {p̃+, a+} near the crossing. If we compose

with the flow φt
p̃− , we need in fact to solve a family of nonlinear, differential equations of

Ricatti’s type. In particular, we need to adjust a+, r, and r0 in order to avoid explosion
in finite time, to ensure the boundness of a− − a∞ (needed in Proposition 3.1), and
to guarantee a suitable smallness of the neglected term. In fact, we do not solve these
Ricatti’s equations but just show the global (time-)existence of some solutions that ensure
the required properties on a−. To this end, we need the following (known?, partially
known?) result on special Ricatti’s differential equations.

Proposition 4.1. Let a, b be non-negative, integrable functions on R+ such that I > 0
and 4IJ < 1, where

I =
∫ +∞

0
a(t) dt and J =

∫ +∞

0
b(t) dt . (24)

Then the solution of the following Cauchy problem

z′ :=
dz

dt
= z2a + b , z(0) = z0 < 0 (25)

is defined and bounded on R+, provided −2Iz0 ∈]1 −
√

1− 4IJ ; 1 +
√

1− 4IJ [. In this
case, the solution satisfies

∀t ∈ R+, z0 ≤ z(t) < 0 . (26)

Proof: see Appendix C.
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Remark 4.2. Let us point out that, if there exist constants a0, b0 > 0 such that a ≥ a0

and b ≥ b0 on some [t0, t0 +T ] with t0 ≥ 0 and π ≤ T
√
a0b0, then the solution blows up at

some T ∗ ≤ t0 +T . Indeed, it suffices to integrate the inequality z′ ≥ a0z
2 + b0. Therefore,

we do need a smallness condition in Proposition 4.1. This explains the requirement that
4IJ < 1. To ensure this condition in the frame of Theorem 2.4, we cannot simply choose
a+ small enough since |ψ|2/r0 would be large. So, we use another degree of freedom, which
does not depend on the Hamilton flows, namely the variation of Ṽ /ρ̃.

Proof of Theorem 2.4: Let us choose some ε0 > 0 such that the functions p̃± are
non-trapping on p̃−1

± (]λ − ε0;λ + ε0[), respectively. Recall that we can find R1 > 0 such
that A∞ = a∞I2 (defined in (6)) is an escape function for P at energy λ outside B∗

R1

(defined in (17)). Thus, there exists c1 > 0 such that {P,A∞} ≥ c1I2 on E(λ; ε0) \ B∗
R1

.
By (19), this implies that {p̃±, a∞} ≥ c1 on p̃−1

± (]λ− ε0;λ+ ε0[) \B∗
R1

.
For some R > R1 large enough, we construct, as in [GM], a global escape function a+

for p̃+ at energy λ, which coincides with a∞ on T ∗Rn \ B∗
R and satisfies, for some c > 0,

{p̃+, a+} ≥ c on p̃−1
+ (]λ− ε0;λ+ ε0[).

Now, we choose T > 0 bigger than the supremum of |a∞| on E(λ; ε0) ∩ B∗
R. There-

fore E(λ; ε0) ∩ B∗
R ⊂ {β ∈ T ∗Rn;−T ≤ a∞(β) ≤ T} ∩ E(λ; ε0). Denoting φt

p̃− by
φt for simplicity, we point out that we have a smooth diffeomorphism Φ from R× [{β ∈
T ∗Rn; a∞(β) = −T}∩p̃−1

− (]λ−ε0;λ+ε0[)] onto p̃−1
− (]λ−ε0;λ+ε0[), given by Φ(t, β) = φt(β),

since p̃− is non-trapping on p̃−1
− (]λ − ε0;λ + ε0[) and a∞ is an escape function for p̃− on

p̃−1
− (]λ− ε0;λ+ ε0[) \B∗

R. The compact set Φ−1(p̃−1
− (]λ− ε0;λ+ ε0[)∩B∗

R) is contained in
some [0;T0]×K∗, where T0 > 0 and where K∗ is a compact subset of {β ∈ T ∗Rn; a∞(β) =
−T}∩ p̃−1

− (]λ− ε0;λ+ ε0[). This way to isolate the region p̃−1
− (]λ− ε0;λ+ ε0[)∩B∗

R is due
to [GS].
Let χ1 ∈ C∞

0 (R; R) with χ1(t) ≥ sup(t; 1/2), 0 ≤ χ′1 ≤ 1, χ1(t) = t on [1; +∞[, and
χ1 = 1/2 on ]−∞; 0]. In view of (23), we choose

sup
(
{p̃+, a+}; c/2

)
≤ r0 := c χ1

(
{p̃+, a+}/c

)
, (27)

sup
(
{p̃−, a+}; c1/2

)
≤ r := c1 χ1

(
{p̃−, a+}/c1

)
. (28)

For α ∈ {β ∈ T ∗Rn; a∞(β) = −T} ∩ p̃−1
− (]λ− ε0;λ+ ε0[), let k(t;α) := (|ψ|2/r0)◦φt(α) ≥

0, h(t;α) := r◦φt(α), and g(t;α) = a+◦φt(α). Notice that the function (h − g′)(·;α) is
nonnegative and has compact support included in R+, since r ≥ {p̃−, a+} with equality
on p̃−1

− (]λ− ε0;λ+ ε0[) \B∗
R. We define

I±(α) := ±
∫ ±∞

0
k(t;α) dt ≥ 0 , J(α) :=

∫ +∞

0
(h− g′)(t;α) dt ≥ 0 . (29)

Due to the non-trapping assumption (on p̃−), there exists some finite TR > 0 such that,
for all α ∈ p̃−1

− (]λ − ε0;λ + ε0[), the Lebesgue measure of the set {t ∈ R;φt(α) ∈ B∗
R} is

≤ TR. The properties of χ1 ensure that

J(α) ≤ TR max
(
1/2 ; sup

B∗
R

|{p̃−, a+}|
)

=: T1 , (30)
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for all α ∈ {β ∈ T ∗Rn; a∞(β) = −T} ∩ p̃−1
− (]λ − ε0;λ + ε0[), and this bound still holds

if we increase T . By (27) and (8), we see that, for all α ∈ {β ∈ T ∗Rn; a∞(β) = −T} ∩
p̃−1
− (]λ− ε0;λ+ ε0[),

I±(α) ≤ ±(2/c)κ 2
√
λ
∫ ±∞

0
〈q(t;α)〉−1−δ dt , (31)

where we wrote φt
p̃−(α) = φt(α) = (q(t;α); p(t;α)). We need some more information on

this flow, given in the following lemma. We set φt
0(α) = (q0(t;α); p0(t;α)) := (x+ 2tξ, ξ),

for α = (x, ξ).

Lemma 4.3. There exist some C > 0 and σ ∈ [0; 1[ such that, for R′ ≥ R large enough
and T bigger than the supremum of |a∞| on E(λ; ε0)∩B∗

R′, 〈q(t;α)〉 ≥ C〈t〉, the derivative
with respect to α of φt(α) satisfy |Dα(φt − φt

0)(α)| ≤ 1− σ on R× [{β ∈ T ∗Rn; a∞(β) =
−T} ∩ p̃−1

− (]λ− ε0;λ+ ε0[) \K∗], R−×K∗, and R+× φT0(K∗). In particular, there exists
some D > 0 such that, on these three regions,

|Dξq(t;α)| ≤ D〈t〉 and |Dxq(t;α)|+ |Dxp(t;α)|+ |Dξp(t;α)| ≤ D .

Proof: This lemma follows essentially from results in [DG], Chapters 1 and 2. However,
for sake of completeness, we sketch a proof in Appendix C.

By (the first result in) Lemma 4.3, we derive from (31) the finitness of the integrals I±(α).
Actually, we even obtain that I−(α) ≤ D1(R

′)−δ/2, uniformly for α ∈ {β ∈ T ∗Rn; a∞(β) =
−T}∩p̃−1

− (]λ−ε0;λ+ε0[). We choose R′ large enough such that D1(R
′)−δ/2 ≤ 1/(8T1). Let

T be bigger than the supremum of |a∞| on E(λ; ε0)∩B∗
R′ . Now, considerind (31) again, we

choose κ small enough such that, for all α ∈ {β ∈ T ∗Rn; a∞(β) = −T}∩p̃−1
− (]λ−ε0;λ+ε0[),

I+(α) ≤ 1/(8T1). In view of (23), we consider the maximal solution t 7→ z(t;α) of the
Ricatti’s differential equation, for α ∈ {β ∈ T ∗Rn; a∞(β) = −T} ∩ p̃−1

− (]λ− ε0;λ+ ε0[),

z′(t;α) :=
dz

dt
(t;α) = z2(t;α)k(t;α) + h(t;α) − g′(t;α) , (32)

z(0;α) = −4T1 ,

keeping in mind that this solution will be (a−− a+)◦φt(α). Thanks to (30), we can apply
Proposition 4.1 (if I+(α) = 0, the corresponding solution is defined on R+ and bounded
above by J(α), for any z0 ∈ R−). Thus, the maximal solution is defined on R+ and
satisfies z0 ≤ z ≤ T1. On R−, (32) reduces to z′ = z2k. Since I−(α) ≤ 1/(8T1), the
solution is defined on R− and satisfies −4T1/(1− 4T1I

−) ≤ z ≤ −4T1.
Now, we define a− to be a smooth function on T ∗Rn such that, a−◦φt(α) = a+◦φt(α) +
z(t;α), for all t ∈ R and α ∈ {β ∈ T ∗Rn; a∞(β) = −T}∩p̃−1

− (]λ−ε0;λ+ε0[). We can choose
this function such that a−−a∞ is bounded on E(λ; ε0). Since it satisfies (23) thus (22) on
p̃−1
− (]λ− ε0;λ+ ε0[), we obtain (21) on p̃−1

+ (]λ− ε0;λ+ ε0[)∩ p̃−1
− (]λ− ε0;λ+ ε0[), yielding

the positivity of (20) on p̃−1
+ (]λ−ε0;λ+ε0[)∩ p̃−1

− (]λ−ε0;λ+ε0[). More precisely, we have,
for the matrix (20), the lower bound (cc1/4)I2 on p̃−1

+ (]λ−ε0;λ+ε0[)∩ p̃−1
− (]λ−ε0;λ+ε0[).

Assume, for a while, that the function (∇ξ(a−+a+))·∇xΠ̃+ is bounded on E(λ; ε0), then we
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choose ε′0 ∈]0; ε0] small enough to ensure that the term containing τ in (20) is ≤ (cc1/5)I2
on p̃−1

+ (]λ−ε′0;λ+ε′0[)∩p̃−1
− (]λ−ε′0;λ+ε′0[). On E(λ; ε′0)\[p̃−1

+ (]λ−ε′0;λ+ε′0[)∩p̃−1
− (]λ−ε′0;λ+

ε′0[)], the “classical” Mourre estimate (4) holds true since we ensured {p̃±, a±} ≥ c′ > 0 on
p̃−1
± (]λ− ε′0;λ+ ε′0[). But a− does not coincide with a∞ for |x| large. Let χ ∈ C∞

0 (Rn; R)
with 0 ≤ χ ≤ 1 and χ = 1 on BR. Since a− − a∞ is bounded on E(λ; ε′0), we can choose
the variation of χ small enough such that a+Π̃+ +(χa−+(1−χ)a∞)Π̃− is a global escape
function for P at energy λ.
So, to end the proof, we show that (∇ξ(a− + a+)) · ∇xΠ̃+ is bounded on E(λ; ε0). By (8),
the function (∇ξa∞) · ∇xΠ̃+ is bounded there, so it suffices to show that (∇ξ(a− − a+))
is bounded, since a+ = a∞ for |x| large enough. We just have to show the boundness of
∇ξ(a− − a+) on p̃−1

− (]λ − ε0;λ + ε0[) \ Φ([0;T0] × K∗), since we remove a compact set.
By (the second result in) Lemma 4.3, it suffices to bound Dα[(a− − a+)◦φt(α)] on the
three regions given in Lemma 4.3. In the two first regions, the function (a− − a+)◦φt(α)
coincides with the function z, while, on the third region, it equals the function z̃(t;α) :=
z(t+T0;φ

−T0(α)), which is the solution of the equation (32) with initial condition z̃(0;α) =
z(T0;φ

−T0(α)) < 0. But, on the relevant regions, we have the following explicit formula

z(t;α) =
−(1 + ε)T1

−(1 + ε)T1 +
∫ t
0 k(s;α) ds

(33)

for z and the same for z̃ with −(1+ε)T1 replaced by z(T0;φ
−T0(α)), since the function (h−

g′)(t;α) vanishes. Notice that Dα[z(T0;φ
−T0(α))] is bounded on φT0(K∗). By Lemma 4.3,∣∣∣∣Dξ

∫ t

0
k(s;α) ds

∣∣∣∣ ≤
∫ +∞

0

{∣∣∣Dx[|ψ|2/r0)]◦φt(α)
∣∣∣ · ∣∣∣Dξq(t;α)

∣∣∣
+
∣∣∣Dξ[|ψ|2/r0]◦φt(α)

∣∣∣ · ∣∣∣Dξp(t;α)
∣∣∣} dt

≤ C ′
∫ +∞

0

{
〈q(t;α)〉−3−2δ〈t〉 + 〈q(t;α)〉−2−2δ

}
dt ≤ C ′′ ,

uniformly on the regions given in Lemma 4.3. On the same regions, we find in the same
way a bound for |Dx

∫ t
0 k(s;α) ds|. This yields the boundness of Dαz(t;α) and Dαz̃(t;α)

on the relevant regions.

Remark 4.4. In some particular case, we do not need to consider a nonlinear problem
and can directly derive Theorem 2.4. Assume indeed that V = τ Ṽ everywhere and that
Ṽ is a constant matrix near C. Then, in (19), the last term equals zero. Therefore, it
suffices to use the non-trapping condition on p̃± to construct independent escape functions
a± for p̃±, which equal a∞ for large |x|, as in [GM]. Then the function A = a+Π̃+ +a−Π̃−
is a global escape function for P , which equals A∞ for large |x|.

5 Codimension 2 crossings.

In this section, we still consider the problem of the existence of global escape function
for P , but in the case of Codimension 2 crossings. First of all, we exhibit the obstruction
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announced in Section 2 and prove Theorem 2.6. Then, we show Proposition 2.8 and its
refinement in Remark 2.9.

As already pointed out, if there is some escape function for P near T ∗C, then there is a
scalar one, for instance its half-trace (see Appendix D). Therefore, we restrict the question
to scalar functions. So, we are looking for a smooth function a : T ∗Rn −→ R such that,
for some ε0 > 0,

{p, a} >
√
{v1, a}2 + {v2, a}2 (34)

on T ∗C ∩ E(λ, ε0), where the energy localization E(λ, ε0) is defined in (5). If we denote
by σ the second fundamental form on T ∗Rn, we can rewrite this condition as

σ(Hp, Ha) >
√
σ(Hv1 , Ha)2 + σ(Hv2 , Ha)2 (35)

on T ∗C ∩ E(λ, ε0). Since T ∗C is symplectic, we have, for all α ∈ T ∗C,

TαT
∗Rn = TαT

∗C ⊕
(
TαT

∗C
)σ

(36)

where the second term is the orthogonal space of TαT
∗C with respect to σ evaluated at

α. If we define p′ (resp. a′) as the restriction of p (resp. a) to T ∗C, then, according to the
decomposition (36), we have Hp = Hp′ + (Hp − Hp′) (resp. Ha = Ha′ + (Ha − Ha′)), as
shown in Appendix B. Therefore, σ(Hp, Ha) = σ(Hp′ , Ha′)+σ(Hp−Hp′ , Ha−Ha′). Since
T ∗C ⊂ C∗ and (TαC∗)σ = Vect(Hv1 , Hv2) (see Appendix B), Vect(Hv1 , Hv2) ⊂ (TαT

∗C)σ

and σ(Hvj
, Ha) reduces to σ(Hvj

, Ha − Ha′), for j = 1, 2. So, (35) may be equivalently
rewritten as

σ(Hp′ , Ha′) + σ(Hp −Hp′ , Ha −Ha′) >
√
σ(Hv1 , Ha −Ha′)2 + σ(Hv2 , Ha −Ha′)2 (37)

on T ∗C ∩ E(λ, ε0). Furthermore, since Hp belongs to TαC∗, Hp − Hp′ is in fact in
Vect(Hv1 , Hv2), as expressed in (11) and shown in Appendix B. Now, we can guess
what kind of obstruction may appear. Since T ∗C is symplectic, σ(Hp′ , Ha′) can be viewed
as a Poisson bracket of functions on T ∗C and if C is compact, for instance, then so is
T ∗C∩E(λ, ε0) and p′ cannot have a global escape function. Therefore, the term σ(Hp′ , Ha′)
cannot be positive everywhere on T ∗C ∩E(λ, ε0). Thus, at some point α ∈ T ∗C ∩E(λ, ε0),

σ(Hp −Hp′ , Ha −Ha′) >
√
σ(Hv1 , Ha −Ha′)2 + σ(Hv2 , Ha −Ha′)2 , (38)

which implies (see Appendix D) that α is not confining for P at the considered energy,
according to Definition 2.5. Here, we have introduced the main ingredients of the proofs
of Theorem 2.6 and Proposition 2.8.

Proof of Theorem 2.6: Assume that there is an escape function for P on T ∗C. Then,
by Appendix D, there is a scalar one: a. By the previous discussion, there is some ε0 > 0
such that (37) holds true on T ∗C ∩ E(λ, ε0). By assumption, there is a trapped trajec-
tory for p′, contained in the confining region for P . On this trajectory, there is a point
α ∈ T ∗C ∩ E(λ, ε0) where σ(Hp′ , Ha′) vanishes. So, (38) holds true at α, which is a con-
tradiction, since the crossing is confining at α.
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Now, we want to prove Proposition 2.8, constructing first an escape function near T ∗C
and then near C∗. To this end, we need some notation and notions. Let us define

U :=
{
x ∈ Rn; |∇v1(x)| |∇v2(x)| > |∇v1(x) · ∇v2(x)|

}
and U∗ := U × Rn . (39)

By assumption, the open set U contains C. We recall (17), since the escape function
should coincide with A∞ outside some B∗

R. We have already described T ∗C, namely in
(9). For x ∈ C, we have the direct sum

T ∗x Rn = T ∗xC ⊕ N∗
xC , (40)

where the conormal space N∗
xC to C over x is defined by

N∗
xC :=

{
ξ ∈ T ∗x Rn; ξ ∈ (TxC)⊥

}
. (41)

We denote by PN
x (resp. P T

x ) the projection onto N∗
xC (resp. T ∗xC) associated to the

decomposition (40).

The assumptions 1 and 2 in Proposition 2.8 are independent, as the previous discussion
shows. Thus, we consider them separately to prove this proposition. Some more work
will give the refinement given in Remark 2.9.

Assume that assumption 1 of Proposition 2.8 holds true. In view of (37), we look for a
function a such that Ha −Ha′ = 0 and such that a′ is an escape function for p′. So, we
construct such an escape function, which is defined on T ∗C only, and extend it to some
neighborhood of T ∗C. To this end, avoiding local coordinates, we use a vector field that
is conormal to C∗. Precisely, we consider, the differential equation

dyt

dt
= −∇ρ2(yt) , y0 = x . (42)

There exists some open set U1 with C ⊂ U1 ⊂ U such that, for x ∈ U1, the maximal
solution of (42) is well defined for all t ≥ 0, the limit y(x) of y(t;x), as t → +∞, exists
and defines a smooth function of x on U1 with values in C, which coincides with the identity
on C. Furthermore, for (x, ξ) ∈ T ∗U1, we can construct η(x, ξ) ∈ T ∗y(x)U1 such that η is
smooth on T ∗U1 with values in T ∗C, and such that η(x, ξ) = ξ and ∇vj · ∇ξη(x, ξ) = 0 on
T ∗C, for j = 1, 2. All these properties are proved in Appendix D.

Proposition 5.1. Under the assumptions of Proposition 2.8, with condition 1, there exist
a smooth, scalar function A = aI2, which equals A∞ for |x| large enough, and some R > 0
large enough such that A is an escape function for P at energy λ on [T ∗C∩B∗

R]∪T ∗Rn\B∗
R.

Proof: Let R1 > 0 be large enough such that, for some c1 > 0, {P,A∞} ≥ c1I2 on
E(λ, ε0) \B∗

R1
. Let g′ ∈ C∞

0 (T ∗C; R) with 0 ≤ g′ ≤ 1 and g′ = 1 on T ∗C ∩B∗
R1

. Since p′ is
non-trapping at energy λ, we can find a smooth, bounded function a′ on T ∗C which satisfies
(15) (where g′ and p′ replace g and p, respectively) on (p′)−1(]λ−ε0;λ+ε0[) = T ∗C∩E(λ, ε0)
(decreasing eventually ε0). Now, we choose a smooth function a1 on T ∗Rn such that
a1(x, ξ) = a′(y(x), η(x, ξ)) on U∗1 and it is also bounded, and we set A1 = a1I2. By the
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choice of η, its restriction to T ∗C is a′ and Ha1 −Ha′1
vanishes on T ∗C. This implies, by

(37), that {P,A1} ≥ I2 (resp. {P,A1} ≥ 0) on E(λ, ε0)∩T ∗C∩B∗
R1

(resp. E(λ, ε0)∩T ∗C).
We set A = A∞+dχA1 for some constant d > 0 and some cut-off χ, as in Propostion 3.1.
Following the arguments of the proof of Propostion 3.1, we can choose d and χ such that
A is a scalar escape function for P at energy λ on [B∗

R ∩ T ∗C] ∪ T ∗Rn \ B∗
R, for R ≥ R1

large enough. Moreover, A equals A∞ for |x| large.

Next, we consider the other condition in Proposition 2.8, condition 2. Under this condi-
tion, we want to obtain (37) through (38). Therefore, it is natural to seek a function a1

of the form a1(x, ξ) := β1(x, ξ)ξ · ∇v1(x) + β2(x, ξ)ξ · ∇v2(x), which satisfies a1 = 0 and
∇ξa1 = β1∇v1(x) + β2∇v2 on T ∗C. In view of (38) and its meaning (see Appendix D), in
view of (11) rewritten near T ∗C with smooth functions µ1 and µ2 (see Appendix B), we
choose the bounded, smooth functions on U∗

β1 =
(
µ1|∇v2|2 − µ2(∇v1 · ∇v2)

)
/µ2 , (43)

β2 =
(
µ2|∇v1|2 − µ1(∇v1 · ∇v2)

)
/µ2 , (44)

where µ = (1 + µ2
1 + µ2

2)
1/2 ≥ 1. This defines a bounded, smooth function a1 on U∗.

Proposition 5.2. Under the assumptions of Proposition 2.8, with condition 2, there exist
a smooth, scalar function A = aI2, which equals A∞ for |x| large enough, and R > 0 large
enough such that A is an escape function for P at energy λ on [T ∗C ∩B∗

R] ∪ T ∗Rn \B∗
R.

Proof: Let A1 = a1I2, for a1 := β1(ξ · ∇v1) + β2(ξ · ∇v2), where the functions β1, β2 are
defined in (43) and (44). Since a1 = 0 on T ∗C, (34) reduces to (38). Notice that (38) only
depends on ∇ξa1 = β1∇v1 + β2∇v2. Thus (38) holds true on T ∗C, by the choice of β1, β2

(see Appendix B). We set A = A∞ + dχA1 for some constant d > 0 and some cut-off χ,
as in Propostion 3.1. As in the proof of Propostion 3.1, we can find such A satisfying the
requirement of Proposition 5.2.

Now, we try to construct an escape function near C∗. Our idea is to add to the previous
escape function on T ∗C a scalar function ξ · ∇w2(x), where w(x) is small near C, in order
to get rid of the matricial structure of P . Indeed, the off-diagonal terms of {P, ξ · ∇w2}
are small, while the diagonal, up to a small term, is 4|ξ · ∇w|2I2. It is quite natural to
choose w = ρ, since, for x ∈ C and ξ 6∈ T ∗xC, if |ξ|2 is positive so is also |PN

x ξ|2, yielding
the positivity we want to use. We define the smooth, scalar function AN = aN I2 with

∀(x, ξ) ∈ T ∗Rn , aN(x, ξ) = ξ · ∇ρ2(x) . (45)

Notice that it is bounded on E(λ, ε0). Furthermore, for any R > 0, there exists some
cR > 0 such that, on E(λ, ε0) ∩B∗

R,

{P,AN}(x, ξ) ≥ cR|PN
x ξ|2I2 + OR(|ρ(x)|) . (46)
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Proposition 5.3. Assume that we have a smooth function A, which coincides with A∞
for |x| large enough and is an escape function for P at energy λ on [T ∗C∩B∗

R′ ]∪T ∗Rn\B∗
R′,

for some R′ > 0. Then, we can find a smooth, scalar function Ã, which coincides with
A∞ for |x| large enough, and R > 0 large enough, such that Ã is an escape function for
P at energy λ on [C ∩BR] ∪ Rn \BR.

Proof: Let R1 ≥ R′ be large enough such that A = A∞ outside B∗
R1

and such that
there exists c1 > 0 for which |ξ|2 ≥ c1 and {P,A∞} ≥ c1/2 on E(λ; ε0) ∩ T ∗Rn \ B∗

R1
.

There exists some c′1 > 0 such that {P,A} ≥ c′1I2 on E(λ; ε0)∩T ∗C∩B∗
R1

. By a continuity
argument, we can find σ > 0 such that (x, ξ) ∈ E(λ; ε0)∩C∗∩B∗

R1
and |PN

x ξ| < σ|ξ| imply
that {P,A}(x, ξ) ≥ c′1/2I2. Now, by (46), (x, ξ) ∈ E(λ; ε0) ∩ C∗ ∩ B∗

R1
and |PN

x ξ| ≥ σ|ξ|
imply that {P,AN}(x, ξ) ≥ cR1σ

2c1I2, where cR1 > 0 is given by (46) for R = R1. Let
d > 0 be a constant large enough such that

sup
B∗

R1
∩E(λ;ε0)

∥∥∥{P,A}∥∥∥ < d cR1 σ
2c1 .

As in the proof of Proposition 3.1, we set Ã = A+dχAN where χ ∈ C∞
0 (Rn; R), 0 ≤ χ ≤ 1,

χ = 1 on BR1 , and write (18). On E(λ; ε0) ∩ C∗ ∩ B∗
R1

, we have {P, Ã} ≥ c′I2, for some
c′ > 0, since χ = 1 on BR1 . Now we can follow the arguments in the proof of Proposi-
tion 3.1 to ensure the desired result.

Justification of Remark 2.9: Under the assumptions of this remark, it suffices to
construct an escape function on T ∗C, since the expected result will then follow from
Proposition 5.3.
Let B ⊂ (p′)−1(λ) be the closure of the trapping region of p′. We assume that there are
open sets U∗

1 , U
∗
2 of T ∗Rn such that B ⊂ (p′)−1(λ)∩U∗

1 ⊂ (p′)−1(λ)∩U∗
1 ⊂ (p′)−1(λ)∩U∗

2 ,
and that the last region is not confining for P at energy λ. Notice that (p′)−1(λ) =
E(λ) ∩ T ∗C.
Let R1 > 0 be large enough such that, for some c1 > 0, {P,A∞} ≥ c1I2 on E(λ) \ B∗

R1
.

Let g′ ∈ C∞
0 (T ∗C; R) with 0 ≤ g′ ≤ 1, g′ = 1 on B∗

R1
∩ T ∗C ∩ (T ∗Rn \ U∗

2 ) and
supp g′ ⊂ T ∗Rn \ U∗

1 . As in [GM] (see (15)), we can construct a smooth, bounded func-
tion a′ on T ∗C such that {p′, a′}′ = g′ ≥ 0 on (p′)−1(λ), where {·, ·}′ denotes the Poisson
bracket on T ∗C. Let χ′ ∈ C∞

0 (T ∗C; R) with 0 ≤ χ′ ≤ 1, χ′ = 1 on B∗
R1
∩ T ∗C ∩ U∗

1 ,
suppχ′ ⊂ T ∗C ∩ U∗

2 , and χ′ + g′ ≥ 1/2 on B∗
R1
∩ T ∗C. Now we construct a smooth,

bounded function a1 as in the proof of Proposition 5.1. Similarly, we extend χ′ on U∗1 to
χ. Let a2 = β1(x, ξ)ξ ·∇v1(x)+β2(x, ξ)ξ ·∇v2(x) on U∗, where the functions β1 and β2 are
given in (43) and (44). In particular, there exists c2 > 0 such that, on E(λ)∩B∗

R1
∩ T ∗C,

{P, χa2I2} = χ′{P, a2I2} ≥ c2χ
′I2, since a2 = 0 on T ∗C. Let a = a1 + a2 and A = aI2.

On E(λ)∩B∗
R1
∩T ∗C, we thus have {P,A} ≥ cI2, for some c > 0. Notice that {P,A} ≥ 0

on E(λ) ∩ T ∗C. Now, we define Ã = a∞ + dχ0A like in the proof of Proposition 3.1, that
we can follow to get Remark 2.9.

Appendix.
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A Sharp G̊arding inequality.

Here we sketch a proof of the sharp G̊arding inequality for matricial symbols. We just
adapt a known proof for scalar symbols to matricial ones.

For bounded symbols A, valued in the non-negative, real symetric matrices, we want
to show that there exists a constant C such that, in the sense of bounded self-adjoint
operators on L2, Â ≥ C h, where Â is the Weyl h-quantization of A :

C∞
0 (Rn; C2) 3 u 7→ (Âu)(x) = (2πh)−n

∫
Rn
eiξ·(x−y)/hA

(
(x+ y)/2, ξ

)
u(y) dydξ .

For any bounded, matrix-valued symbol A, we define A1 by

A1(x, ξ) := (πh)−n
∫

T ∗Rn
e−[(x−y)2+(ξ−η)2]/hA(y, η) dydη .

We observe that A1 is also a bounded symbol and that the difference A − A1 is O(h) in
this class of symbols. Let Ã be the Anti-Wick h-quantization of A, that is Â1, the Weyl
h-quantization of A1. By the Calderon-Vaillancourt theorem (which works for matricial
pseudodifferential operators), the bounded operator Â − Ã on L2 is O(h) in the corre-
sponding norm. So it suffices to prove Ã ≥ 0, provided A ≥ 0, to get the result. To this
end, we can write, for all u ∈ C∞

0 ,

〈u, Ãu〉 =
∫

T ∗Rn
e−y2/h |U(y, η)|2A(y, η) dydη ,

where U may be expressed in terms of u. Thus, if A is nonnegative so is Ã.

B Geometrical properties.

In this part, we collect some geometrical facts for both types of crossings. We use the
notation introduced in Section 5. Since we want to consider functions defined near C∗, we
need to extend the geometrical objects of Section 5 to some neighborhood of C∗.
We set, for ε = (ε1, ε2) ∈ R2 \ {(0, 0)}, C(ε) := v−1

1 (ε1)∩ v−1
2 (ε2), the intersection of the ε1-

level set of v1 and the ε2-level set of v2. The set C(ε) ∩ U is a codimension 2 submanifold
of U . We define the sets C∗(ε) := C(ε) × Rn. For x ∈ C(ε) ∩ U , we have, as in (40),
T ∗x Rn = T ∗xC(ε) ⊕ N∗

xC(ε) where the cotangent space T ∗xC(ε) (resp. the conormal space
N∗

xC(ε)) of C(ε) at x is defined as in (9) (resp. (41)). We still denote by P T
x (resp. PN

x )
the natural projection onto T ∗xC(ε) (resp. N∗

xC(ε)) associated to this direct sum. Notice
that, for ε = (0, 0), we find objects, defined in Section 5. So, in this case, we simply pull
out the symbol “(0, 0)” at the end keeping this way a coherent notation.
Recall first that the Hamilton field Ha(β) of some smooth function a on T ∗Rn at β ∈ T ∗Rn

is the unique vector w ∈ TβT
∗Rn such that the differential da(β) of a at β is given by

σβ(w, ·), where σβ is the value of the fundamental 2-form at β. Furthermore, if D∗ is
some level set of a, then, for any β ∈ D∗, the orthogonal set to TβD∗ w.r.t. the form σβ
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is (TβD∗)σ = Vect(Ha(β)).
For α ∈ T ∗C(ε) ∩ U∗, the space TαT

∗C(ε) is symplectic and we have

TαT
∗Rn = TαT

∗C(ε) ⊕
(
TαT

∗C(ε)
)σ
. (47)

For any smooth function a defined on U∗, we denote by a′ its restriction to T ∗C(ε) ∩ U∗.
Since the restriction of da of a to TαT

∗C(ε) equals da′, we have, by definition of the
Hamilton fields, Ha(α) − Ha′(α) ∈ (TαT

∗C(ε))σ. Therefore, according to (47), Ha(α)
splits into Ha′(α)+(Ha(α)−Ha′(α)). For Codimension 2 crossings, we have, since Hv1(α)
and Hv2(α) are independent, (TαC∗(ε))σ = Vect(Hv1(α), Hv2(α)). Furthermore, since
v1 and v2 only depend on x, σ(Hv1 , Hv2) is zero at α. Thus (TαC∗(ε))σ ⊂ TαC∗(ε).
Obviously, TαT

∗C(ε) ⊂ TαC∗(ε), so Vect(Hv1(α), Hv2(α)) ⊂ (TαT
∗C(ε))σ. By an argument

of dimension, we even have TαC∗(ε) = Vect(Hv1(α), Hv2(α)) ⊕ TαT
∗C(ε). Since p =

|ξ|2 + u(x), we see, thanks to (9), that σα(Hv1(α), Hp(α)) = σα(Hv2(α), Hp(α)) = 0, that
is Hp(α) ∈ TαC∗(ε). Therefore, according to the previous decomposition,

∀α ∈ T ∗C(ε) ∩ U∗, Hp(α) =
(
µ1(α)Hv1(α) + µ2(α)Hv2(α)

)
+ Hp′(α) , (48)

for some smooth, real functions µ1, µ2. Here, p′ is the restriction of p to T ∗C(ε). Of
course, we have the same situation for Codimension 1 crossings, that is, for U = {x ∈
Rn;∇τ(x) 6= 0} and α ∈ C∗(ε)∩U∗, TαC∗(ε) = Vect(Hτ (α))⊕TαT

∗C(ε), Hp(α) ∈ TαC∗(ε),
and the corresponding decomposition

∀α ∈ T ∗C(ε) ∩ U∗, Hp(α) = µ(α)Hτ (α) + Hp′(α) , (49)

for some smooth, real function µ. The phenomenon described in Section 5 appears also
here. If we consider a scalar function a, then the positivity of {P, aI2} on E(λ) implies
the inequality

σ(Hp′ , Ha′) + σ(Hp −Hp′ , Ha −Ha′) > ρ̃|σ(Hτ , Ha −Ha′)|

on T ∗C ∩E(λ). If σ(Hp′ , Ha′) is not everywhere positive on T ∗C ∩E(λ) (if C is compact,
for instance), then we must have µ > ρ̃ everywhere on T ∗C ∩ E(λ).

C Codimension 1.

For the construction of escape functions, we need some result on a special case of Ricatti’s
differential equations, which might be not completely included in the litterature, and some
properties of Hamilton flows, essentially contained in [DG], that we sketch here.

Proof of Proposition 4.1 : By the Cauchy-Lipschitz theorem, we have local existence
and uniqueness of solution. We consider the maximal solution, defined on [0;T ∗[, for
some T ∗ > 0. Assume that there exists some t1 ∈ [0;T ∗[ such that z(t1) = 0. Then, since
|z(t)| ≤ |z0| on [0; t1], z

′ ≤ az0z + b on [0; t1]. Therefore, we obtain on [0; t1],

z(t) ≤ z0exp
(
z0

∫ t

0
a(s) ds

)
+
∫ t

0
b(s)exp

(
z0

∫ t

s
a(v) dv

)
ds

≤ z0exp
(
z0

∫ t

0
a(s) ds

)
+
∫ t

0
b(s) ds ,
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since z0 < 0 and a ≥ 0. Using the convexity of the exponential function, we see that

0 = z(t1) ≤ z0 + z2
0

∫ t

0
a(s) ds +

∫ t

0
b(s) ds ≤ z0 + z2

0I + J .

Since 1−4IJ > 0, we arrive at a contradiction for 2Iz0 ∈]−1−
√

1− 4IJ ;−1+
√

1− 4IJ [⊂
] −∞; 0]. Thus, for such z0, the solution is defined on R+ and negative. Since z is non-
decreasing, it satisfies (26).

Proof of Lemma 4.3 : Let a be a global escape function for p̃− at energy λ, such that
a = a∞ outside B∗

R′ . Thus, there exists c1 > 0 such that {p̃−, a} ≥ c1 on p̃−1
− (]λ−ε0;λ+ε0[),

for small enough ε0 > 0. On this region, if we take β with a(β) = 0 then, for all t,
c2〈q(t; β)〉 ≥ |a◦φt(β)| ≥ c1|t|, for c2 > 0 independent of t and β (see Theorem 2.4.3 in
[DG]). Thus, there exists c > 0 such that, uniformly, 〈q(t; β)〉 ≥ c〈t〉, yielding the first
result of Lemma 4.3 in the last two regions. For the first one, 〈q(t;α)〉 = 〈q(t − t1; β)〉,
for some β satisfying a(β) = 0 and some t1 ≥ 0. Using the previous estimate for q(t; β)
and the fact that t1 ≤ T/c1, we get the first result for the first region.
In the spirit of [DG], we introduce a time-dependent effective force. Let χ ∈ C∞(R; R)
such that 0 ≤ χ ≤ 1, χ = 0 on ] −∞; 1/2], and χ = 1 on [1; +∞[. We set, for t ∈ R
and x ∈ Rn, F (t;x) = χ(〈x〉/(C〈t〉))χ(x/R′)(−∇x(u− τ ρ̃))(x). For the three regions we
consider, (q(t;α); p(t;α)) is the solution of the Hamilton system

dq

dt
(t;α) = 2p(t;α) ,

dp

dt
(t;α) = F

(
t, q(t;α)

)
,

starting at α = (x, ξ) at t = 0. As usual, this is equivalent to

dq

dt
(t;α) = 2p(t;α) , q(t;α) = q0(t;α) + 2

∫ t

0
(t− s)F

(
s, q(s;α)

)
ds .

The function t 7→ z(t;α) := q(t;α)− q0(t;α) is solution of P(z) = z where

P(v)(t) := 2
∫ t

0
(t− s)F

(
s, v(s) + q0(t;α)

)
ds . (50)

Let B be the Banach space of the functions t 7→ v(t), such that ‖v‖B := supt∈R |v(t)/t| <
∞, equiped with the norm ‖ · ‖B. As in Theorem 1.5.1 in [DG], we want to use the fixed
point Theorem. By definition of F , we see that P(v) belongs to B. Derivating w.r.t.
v, we see that ‖DvP(v)‖B ≤ c(R′)−δ/2 by (2), showing that P is a contraction on B,
for R′ large enough. Similarly we get ‖DξP(v)‖ ≤ c(R′)−δ/2, since |Dξq0(s;α)| ≤ C〈s〉.
Since z is a fixed point of P , DξP(z) = (1 − DvP(z))Dξz. Therefore Dξz belongs to
B and ‖Dξz‖B ≤ c(R′)−δ/2. Along the same lines, we show that Dxz belongs to B and
that ‖Dxz‖B ≤ c(R′)−δ/2. Choosing R′ large enough, we can ensure the second result of
Lemma 4.3.
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D Codimension 2.

In this part, we prove that the existence of an escape function for P near T ∗C, for a
Codimension 2 crossing, implies the existence of a scalar one, we relate the confining
condition to some positivity, and we consider some tools used in Proposition 5.1.

Scalar escape function for Codimension 2 crossings: We want to show that the
existence of an escape function A for P at energy λ on T ∗C implies the existence of a
scalar one, namely its half-trace a0.
Notice that a0 is a smooth function on T ∗Rn. Since [P,A] = 0, we can write A = a0I2+a1V
outside C∗, for a smooth function a1 on T ∗Rn \ C∗. Since A is smooth everywhere, so is
the function a1V and so are the functions v1a1 and v2a1. Since v1 and v2 are independent
coordinates near C, we see, using Taylor expansion with rest integral for the functions
v1a1 and v2a1, that a1 extends to a smooth function on T ∗Rn. Next we compute {P,A},
defined in (14), and obtain

{P,A} =
(
{p, a0} − (1/2)∇ξa1 · ∇ρ2

)
I2 + {p, a1}V + {V, a0} + 2a1ξ · ∇V .

For x ∈ C, (∇ρ2)(x) = 0 and V (x) = 0, and for (x, ξ) ∈ T ∗C, ξ · ∇V (x) = 0. Therefore,
on T ∗C, {P,A} = {P, a0}. This proves the expected result.

Confining condition: In the main text, we use the following result for the independent
vectors ∇v1(x) and ∇v2(x) when x belongs to C.
Let e1, e2 be two independent vectors in Rm (m ≥ 2). We shall prove that, given µ1, µ2 ∈
R, there exist λ1, λ2 ∈ R such that

(λ1e1 + λ2e2) · (µ1e1 + µ2e2) >
√

(λ1|e1|2 + λ2e1 · e2)2 + (λ1e1 · e2 + λ2|e2|2)2 , (51)

if and only if µ2
1 + µ2

2 > 1. And, in this case, we can exhibit λ1, λ2 satisfying (51).
To this end, we set x = λ1|e1|2 + λ2e1 · e2 and y = λ1e1 · e2 + λ2|e2|2. Notice that
(λ1e1+λ2e2)·(µ1e1+µ2e2) = µ1x+µ2y. So, the condition (51) means that the scalar prod-
uct of the vectors (µ1, µ2) and (x, y) in R2 must be greater than the norm of (x, y). This
is only possible if the norm of (µ1, µ2) is greater than 1. In this case, we have the solution
(x, y) = (µ1, µ2). Since e1 and e2 are independent, ∆ := |e1|2|e2|2− (e1 ·e2)2 > 0 so we can
recover (λ1, λ2) from (x, y). In particular, (51) is satisfied for λ1 = (µ1|e2|2−µ2(e1 ·e2))/∆
and λ2 = (µ2|e1|2 − µ1(e1 · e2))/∆.

Properties of the differential equation (42): Let z ∈ C. Since z ∈ U , we can find a
bounded open set Uz, with z ∈ Uz ⊂ U , and a smooth diffeomorphism

φz : Uz −→ Wz

x 7→
(
v1(x), v2(x), v3(x), · · · , vn(x)

)
,

onto some open set Wz in Rn, such that x ∈ Uz and a2
1 + a2

2 ≤ ρ2(x) imply (a1, a2, v3(x),
· · · , vn(x)) ∈ Wz. For the maximal solution of (42), defined on [0;T ∗[, starting at x ∈ Uz,
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(d/dt)ρ2(yt) = −|∇ρ2|2(yt), so the function t 7→ ρ2(yt) is nonincreasing. Thus, yt stays
in Uz, for all t ∈ [0;T ∗[. Therefore T ∗ = ∞. Furthermore, we can find some c > 0
such that |∇ρ2|2 ≥ cρ2 on Uz. This implies that (d/dt)ρ2(yt) ≤ −cρ2(yt) and further
that ρ2(yt) ≤ exp(−ct)ρ2(x). Since φz(yt) = (v1(yt), v2(yt), v3(x), · · · , vn(x)), we conclude
that y(x) := limt→+∞ yt exists, belongs to C, and that y equals the smooth function
x 7→ φ−1

z (0, 0, v3(x), · · · , vn(x)) on Uz. So it is well defined and smooth on U1 := ∪z∈CUz.
Since φz◦y◦φ−1

z is the restriction to Wz of a projection, we see that y′(x) is bijective from
TxC(ε), for ε = (v1(x), v2(x)), onto Ty(x)C and equals the identity for x ∈ C. Thus, so is
its transposed map t(y′(x)) from T ∗y(x)C onto T ∗xC(ε). For any ξ ∈ T ∗x Rn, there exists an

unique η(x, ξ) ∈ T ∗y(x)C such that t(y′(x))η(x, ξ) = P T
x ξ. This defines a smooth function

η, which satisfies, on T ∗C, η(x, ξ) = ξ and ∇vj · ∇ξη(x, ξ) = 0 for j = 1, 2.
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