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Abstract

In this paper, we use the Born-Oppenheimer approximation to study the elastic
diffusion operator Sαα, for a two-cluster channel α of a diatomic molecule. Under a
non-trapping condition on the effective potential, we compute the classical limit of
Sαα, acting on quantum observables and microlocalized by coherent states, in terms
of a classical diffusion operator. This work is a continuation of [KMW1], in a sense,
where the channel wave operators were studied.

1 Introduction.

In this work, we study the two-cluster scattering operator for a diatomic molecule. Since
the nuclei are much heavier than the electrons, one expects to observe a behaviour which
would be close to the classical scattering of two particles. This is known as the Born-
Oppenheimer approximation (cf. [BO]). Under suitable conditions, we justify this ap-
proximation for the elastic scattering operator of some two-cluster channel α. To this
end, we study the classical limit (when the nuclei’s masses tend to infinity) of the scatter-
ing operator Sαα, acting on a quantum observable and microlocalized by coherent states.
We introduce the adiabatic operator SAD, which approximates Sαα but is of a simpler
structure. Then we compute the classical limit of this adiabatic operator in terms of the
classical scattering operator (defined in e.g. [RS3]).

In [KMW1] the classical limit of the cluster channel wave operators for such a channel α
was derived. The present work is a continuation of [KMW1] under the same assumptions.
Concerning other mathematical works on the Born-Oppenheimer approximation, we refer
the reader to the references quoted in [KMSW] and [J]. For the classical limit see e.g.
[W3], [RT], and [Y].

Studying a diatomic molecule with N0 electrons, it is known from quantum mechanics that
its dynamics is generated by its Hamiltonian, the following self-adjoint operator acting in
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the Hilbert space L2(IR3(N0+2)),

H = − 1

2m1

∆x1 −
1

2m2

∆x2 +
N0+2∑
j=3

(−1

2
∆xj

) +
∑
l<j

Vlj(xl − xj)

(the electronic mass and Planck’s constant are set equal to unity). The respective mass
of the two nuclei, m1 and m2, are then large compared to unity, the real-valued functions
Vlj represent the two-body interactions between the particles. More generally, the config-
uration space of a single particle is assumed to be IRn for n ≥ 2, so that the previous
operator acts in L2(IRn(N0+2)).

Let a = (A1, A2) be a decomposition of {1, · · · , N0 + 2} in two clusters, such that j ∈ Aj,
for j ∈ {1, 2}. Then each cluster contains a nucleus. Using a suitable change of variables
and removing the center of mass motion, the Hamiltonian is replaced by the following
operator :

P (h) = −h2∆x + P a(h) + Ia(h),

acting on L2(IRn(N0+1)) (see Section 2 for the precise expressions of P a(h) and Ia(h)). The
positive number h given by (1) is the small parameter in this problem, the operator P a(h)
is the sum of the Hamiltonians of each isolated cluster, and the intercluster potential Ia(h)
takes into account the interactions between particles of different clusters. The variable
x ∈ IRn stands for the relative position of the cluster’s centers of mass so that the energy
of this relative motion is given by the operator −h2∆x. Temporarily ignoring this term,
we consider the family {Pe(x;h), x ∈ IRn, h ≤ h0} of operators defined by

Pe(x;h) = P a(h) + Ia(x;h), ∀x ∈ IRn, ∀h ≤ h0,

for some h0 small enough. The Hamiltonian Pe(x;h) is the Hamiltonian of a system of
N0 electrons, which interact with one another while they are moving in an external field
generated by the nuclei. This external field depends on the relative position x of the two
clusters. The operator Pe(x;h) is called the electronic Hamiltonian and one has :

P (h) = −h2∆x + Pe(h).

The two-body interactions appearing in these operators are functions V ∈ C∞(IRn; IR),
such that, for some ρ > 1, they obey

∀α ∈ IN n, ∃Cα > 0; ∀x ∈ IRn, |∂α
xV (x)| ≤ Cα〈x〉−ρ−|α|. (Dρ)

We are interested in thoses states of this system, whose evolution is asymptotically close
to the free evolution of bound states in A1 and A2. This last evolution is generated by
the operator

Pa(h) ≡ −h2∆x + P a(h)

restricted to some proper subspace of P a(h). Using the free evolution generated by P a(h),
the operator SAD will be the scattering operator of an adiabatic operator PAD whose
construction is given as follows.
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Considering the system for h = 0, we suppose that the bottom of the spectrum of the
operator P a(0) is a simple eigenvalue E0, that there is exactly one “curve” x 7→ λ(x; 0),
where λ(x; 0) is also a simple eigenvalue of Pe(x; 0) and such that it converges to E0 as
|x| → ∞. Furthermore, suppose that the map, x 7→ λ(x; 0), assuming its values in the
spectrum σ(Pe(x; 0)) of Pe(x; 0), is globally defined in IRn. Let Π0(0) be the spectral
projector of P a(0) associated to E0, and, for all x ∈ IRn, let Π(x; 0) be the spectral
projector of Pe(x; 0) corresponding to λ(x; 0).

Definition 1.1 Assume that there exists a constant e0 such that, for all x ∈ IRn, one has
λ(x; 0) > e0. For a positive number δ, we set e(x) = λ(x; 0) + δ and E(x) = λ(x; 0) + 2δ.
Assume that we can find a positive number hδ such that one has, for h ≤ hδ,

σ
(
Pe(x;h)

)
∩ [e(x), E(x)] = ∅. (Hδ)

The gap condition (Hδ) is close to the assumption (1.8) in [KMW2]. For the same δ, we
assume that there exists R0 > 0 and hδ > 0 such that, for all |x| ≥ R0 and h ∈ [0, hδ],
one has :

dim Ran
(
1I]−∞,e(x)[

(
Pe(x;h)

))
= 1 (Hδ)

′

(1I]−∞,e(x)[ denotes the characteristic function of the interval ] − ∞, e(x)[). Finally, the
following condition is also assumed :

E0 < inf
x∈IRn

inf
{
σ
(
Pe(x; 0)

)
\ {λ(x; 0)}

}
. (H)

If these assumptions (Hδ), (Hδ)
′, and (H) are satisfied, for some δ > 0, we will say that,

for E0, the semiclassical stability assumption (HS(h)) is satisfied.

Under this assumption on E0, one can find (Γ(x))x∈IRn , a h−independent family of complex
contours such that Γ(x) encircles λ(x; 0) for all x and such that one has :

∀x ∈ IRn, ∀h ∈ [0;hδ], Dist
[
Γ(x), σ

(
Pe(x;h)

)]
≥ δ

2
.

Making use of these contours, one can express the projectors Π0(0) and Π(x; 0) by means
of the Cauchy integral formula (see section 2). For h small enough, one can also define
a spectral projector Π0(h) (respectively Π(x;h)) of P a(h) (respectively Pe(x;h)) by the
same Cauchy formula. Using a direct integral, we define a fibered operator Π(h) by

Π(h) =
∫ ⊕

IRn
Π(x;h) dx.

We can now introduce the adiabatic part of P (h)

PAD(h) = Π(h)P (h)Π(h)
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and the wave operators

ΩAD
± (h) = s− lim

t→±∞
eih−1tP AD(h)e−ih−1tPa(h)Π0(h).

In [KMW1], the existence and the completeness of these wave operators is proved, enabling
us to define an adiabatic scattering operator SAD by :

SAD(h) =
(
ΩAD

+ (h)
)∗

ΩAD
− (h).

Recall that a channel α with decomposition a is given by (a,Eα(h), φα(h)), where φα(h)
is a normalized eigenvector of Pa(h) associated to the eigenvalue Eα(h).

Let us consider the channel α = (a,E0(h), φ0(h)) whose energy E0(h) tends to E0 as
h → 0. According to [KMW1], the wave operators ΩAD

± (h) approximate the following
channel wave operators

Ωα
±(h) = s− lim

t→±∞
eih−1tP (h)e−ih−1tPa(h)Π0(h)

in an appropriate energy band. More precisely, one has∥∥∥(Ωα
±(h)− ΩAD

± (h)
)
χ(Pa(h))

∥∥∥ = O(h)

under a suitable condition on the support of the cut-off function χ ∈ C∞
0 (]E0,+∞[; IR)

(see Theorem 4.1). Thus the operator SAD(h) is close to the elastic scattering operator

Sαα(h) =
(
Ωα

+(h)
)∗

Ωα
−(h),

which is well defined for short-range interactions (cf. [SS]).

From this fact, the study of the classical limit of the scattering operator SAD(h) (see
Section 4) allows us to obtain the main result of the present work :

Theorem 1.2 Assume (Dρ), ρ > 1, for the potentials, and the semiclassical stability as-
sumption (HS(h)) for the simple eigenvalue E0 (cf. Definition 1.1). Let χ ∈ C∞

0 (]E0; +∞[; IR)
be non-trapping for the classical Hamiltonian |ξ|2 + λ(x; 0) (cf. Definition 2.2) and such
that its support satisfies :

sup(suppχ) < inf
x∈IRn

inf
{
σ(Pe(x; 0)) \ {λ(x; 0)}

}
.

Let (x0, ξ0) ∈ IR2n with χ(|ξ0|2 + E0) = 1. For the channel α = (a,E0(h), φ0(h)) and for
all bounded symbols c, valued in L(L2(IRnN0)), we set :

Sc,α(h) = Uh(x0, ξ0)
∗(Sαα(h))∗χ(Pa(h)) c(x, hD) χ(Pa(h))Sαα(h)Uh(x0, ξ0),

where the coherent states operators Uh(x0, ξ0) and the h-pseudodifferential operator c(x, hD),
with symbol c, are defined by (13) and (12) respectively. Denote by Scl

a the classical scat-
tering operator associated to the pair of classical Hamiltonians (|ξ|2, |ξ|2 + λ(x; 0) − E0)
(cf. (1)).

In L2(IRn
x;L2(IRnN0)), the following strong limit exists and is given by :

s− lim
h→0

Sc,α(h) = Π0(0) (c◦Scl
a )(x0, ξ0) Π0(0).
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This work is organized as follows. In Section 2, some notation is introduced and the con-
struction in [KMW1] of parametrices (see [IK]) for PAD is recalled. Microlocal propagation
estimates for this operator are obtained in Section 3. The proof of Theorem 1.2 follows
directly from Theorem 4.2 in Section 4, which proves the existence and gives the value of
the classical limit for the adiabatic scattering operator SAD.

AKNOWLEDGEMENT.

The author expresses his deep gratitude to X.P. Wang for his constant support and his
numerous advices. He also thanks the members of the mathematics department at TU
Berlin for their hospitality and especially V. Bach for his help.

The author is supported by the TMR Programme of the European Commission - Net-
work Postdoctoral training programme in partial differential equations and application in
quantum mechanics.

Contents

1 Introduction. 1

2 Parametrices for the operator PAD. 6

3 Propagation estimates for PAD. 15

4 Classical limit for the operator SAD. 28

Appendix. 36

5



2 Parametrices for the operator PAD.

In this section, we recall the contruction in [KMW1] of parametrices (see [IK]) for PAD,
distinguishing incoming and outgoing regions. These parametrices will be used in the
Sections 3 and 4. The potentials satisfy the condition (Dρ), for ρ > 1.

First, we give the exact expression for the operators P a(h) and Ia(x;h). Let us call y the
dynamic variable in IRnN0 . Denoting by A′

k the set of the electrons in the cluster Ak, by
|A′

k| its cardinal, and by Mk = mk + |A′
k| the total mass of the cluster Ak, for k ∈ {1, 2},

the small parameter h is given by

h =
(

1

2M1

+
1

2M2

)1/2

. (1)

Then, one has :

P a(h) =
2∑

k=1

∑
j∈A

′
k

(
−1

2
∆yj

+ Vkj(yj)
)
− 1

2mk

∑
l,j∈A

′
k

∇yl
· ∇yj

+
1

2

∑
l,j∈A

′
k

Vlj(yl − yj)


and :

Ia(x;h) =
∑

l∈A
′
1,j∈A

′
2

Vlj(yl − yj + x+ f2 − f1) +
∑

l∈A
′
1

Vl2(x− f1 + f2 − yl)

+
∑

j∈A
′
2

V1j(x− f1 + f2 − yj) + V12(x− f1 + f2),

where fk = 1
Mk

∑
j∈A

′
k
yj are h-dependent, for k ∈ {1, 2}. For l < j, we have set Vjl(z) =

Vlj(−z). Denote by Phe the following Hughes-Eckart term :

h2Phe ≡ −
2∑

k=1

1

2mk

∑
l,j∈A

′
k

∇yl
· ∇yj

(the scalar product of the gradients is meant here).

Let us now recall some properties of the projectors Π(x;h) and Π0(h), especially in view
of the fact that they admit an asymptotic expansion in increasing powers of h with
coefficients in L(L2(IRnN0

y )). Under the assumptions of the introduction, one can express
these projectors by the following Cauchy formula, provided δ, hδ are small enough. Then,
for h ∈ [0, hδ],

Π0(h) =
1

2iπ

∫
Γ(∞)

(z − P a(h))−1dz,

where
Γ(∞) ≡ {z ∈ CI; |z − E0| = δ/2}.

For all x ∈ IRn, one also has :

Π(x;h) =
1

2iπ

∫
Γ(x)

(z − Pe(x;h))
−1dz.
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Note that we may always choose Γ(x) = Γ(∞) for |x| large enough. Thanks to the
exponential decay of the eigenfunctions of the operator P a(0), associated to the eigenvalue
E0 (cf. [A]), these projectors have the following properties :

Proposition 2.1 ([KMW1]) The functions IRn 3 x 7→ Π(x;h) ∈ L(L2(IRnN0
y )) are C∞

and verify :

∀α ∈ IN n, ∃Dα > 0; ∀x ∈ IRn,
∥∥∥∂α

x

(
Π(x;h)− Π0(h)

)∥∥∥ ≤ Dα〈x〉−ρ−|α|, (2)

uniformly w.r.t. h ∈ [0, hδ], hδ small enough. Furthermore, for all natural numbers N ,
one has

Π0(h) = Π0(0) +
N∑

k=1

h2kπ0k +O(h2(N+1)) (3)

with π0k ∈ L(L2(IRnN0
y )), for all k = 1, . . . , N . Again for all N , one has, uniformly w.r.t.

x ∈ IRn

Π(x;h) = Π(x; 0) +
N∑

k=1

h2kπk(x) +O(h2(N+1)), (4)

where the functions IRn 3 x 7→ πk(x) ∈ L(L2(IRnN0
y )) are C∞ and verify :

∀α ∈ IN n, ∃Dα > 0; ∀x ∈ IRn, ‖∂α
x (πk(x)− π0k)‖ ≤ Dα〈x〉−ρ−|α|. (5)

Furthermore, the operators π0k and πk(x) have rank at most 1 (multiplicity of E0).

Proof : For the first estimate (2), one may follow the proof of Theorem 2.2 in [KMW1].
We show now the second one (3). For z ∈ Γ(∞) and h small enough, one has

(z − P a(0)− h2Phe)
−1 = (z − P a(0))−1

(
1 + h2Phe(z − P a(0))−1

)−1

=
∞∑

k=0

(z − P a(0))−1
(
h2Phe(z − P a(0))−1

)k
.

For all k, define the following bounded operator

Π̃0k =
1

2iπ

∫
Γ(∞)

(z − P a(0))−1
(
h2Phe(z − P a(0))−1

)k
dz.

Then, for all N , one has

∥∥∥(Π0(h)− Π0(0)−
N∑

k=1

h2kΠ̃0k

)
Π0(0)

∥∥∥ = O(h2(N+1)),

∥∥∥(Π0(h)− Π0(0)−
N∑

k=1

h2kΠ̃0k

)
Π0(h)

∥∥∥ = O(h2(N+1)).

Using the relation

Π0(h)− Π0(0) =
(
Π0(h)− Π0(0)

)
Π0(0) + Π0(h)

(
Π0(h)− Π0(0)

)
,
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we obtain the asymptotic expansion of Π0(h), to all orders. Furthermore, the coefficients
of this expansion are at most rank-one operators, because they all contain a factor Π0(0).

For the operator Π(x;h), we use a slightly different argument because we do not know
how to control the following quantity∥∥∥(z − Pe(x;h))

−1 − (z − Pe(x; 0))
−1
∥∥∥.

To avoid this difficulty, let us project first onto RanΠ(x;h) and onto RanΠ(x; 0). For all
x, the difference (

Π(x;h) − Π(x; 0)
)
Π(x; 0)

is given by

1

2iπ

∫
Γ(x)

(z − Pe(x;h))
−1
(
Pe(x;h)− Pe(x; 0)

)
(z − Pe(x; 0))

−1dz Π(x; 0)

= h2 1

2iπ

∫
Γ(x)

(z − Pe(x;h))
−1Phe(z − Pe(x; 0))−1dz Π(x; 0)

+
1

2iπ

∫
Γ(x)

(z − Pe(x;h))
−1
(
Ia(x;h)− Ia(x; 0)

)
(z − Pe(x; 0))

−1dz Π(x; 0).

Using a Taylor expansion, we obtain, for all N ,

(
Ia(x;h)− Ia(x; 0)

)
Π(x; 0) =

N∑
k=1

h2kIa,k(x)Π(x; 0) +O(h2(N+1)),

where the terms Ia,k(x)Π(x; 0) are O(〈x〉−ρ−k), thanks to the stability assumption and the
exponential decay of eigenfunctions (cf. [J]). For all N and uniformly w.r.t. x, it follows
that (

Π(x;h)− Π(x; 0)
)
Π(x; 0) =

N∑
k=1

h2kΠ̃k(x)Π(x; 0) +O(h2(N+1)). (6)

In the same way, we also obtain the following expansion to all orders and with the same
operators Π̃k

(
Π(x;h)− Π(x; 0)

)
Π(x;h) =

N∑
k=1

h2kΠ̃k(x)Π(x;h) +O(h2(N+1)). (7)

Writing

Π(x;h)− Π(x; 0) =
(
Π(x;h)− Π(x; 0)

)
Π(x; 0) + Π(x;h)

(
Π(x;h)− Π(x; 0)

)
,

it follows from (6) and (7),

Π(x;h)− Π(x; 0) =
N∑

k=1

h2k
(
Π(x;h)Π̃k(x) + Π̃k(x)Π(x; 0)

)
+O(h2(N+1)). (8)

On the right side of (8), we replace each Π(x;h) by the expression given by (8). Then
we obtain a new expansion of the difference Π(x;h) − Π(x; 0), where the coefficient of
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order h2 does not contain Π(x;h) anymore. Repeating this trick a finite number of times
(depending on N), we arrive at the following formula which holds uniformly w.r.t. x :

Π(x;h)− Π(x; 0) =
N∑

k=1

h2kπk(x) +O(h2(N+1)),

with at most rank-one coefficients, since they all contain a factor Π(x; 0). We then have
proved (4). Furthermore, these factors are C∞ functions of x. In the Taylor expansions
above, we may write the remainders as integrals h2NRN(x;h). These remainders of order
N , which are also regular functions of x, can be controlled by the following estimates :∥∥∥(∂α

xRN(x;h)
)
Π(x;h)

∥∥∥ = ON,α(〈x〉−ρ−|α|),

uniformly w.r.t. h and for all α ∈ IN n (cf. [J]). Thus the last estimate (5) follows from
the first one (2). 2

Let us denote by E0(h) the simple eigenvalue of P a(h) which tends to E0 as h→ 0, denote
by λ(x; 0) the simple eigenvalue of Pe(x; 0) which tends to E0 as |x| → ∞ goes and denote
by λ(x;h) the simple eigenvalue of Pe(x;h). Note that λ(x;h) verifies :

λ(x;h) → λ(x; 0), h→ 0,

uniformly w.r.t. x (cf. Proposition 3.1 in [KMW1]) and :

λ(x;h) → E0(h), |x| → ∞,

uniformly w.r.t. h, for h small. The simplicity of these eigenvalues implies that we may
write :

λ(x;h) = Tr
(
Π(x;h)Pe(x;h)

)
, E0(h) = Tr

(
Π0(h)P

a(h)
)
,

where Tr stands for the trace operator in L(L2(IRnN0
y )). Along the lines of the proof of

Proposition 2.1 we obtain, for all N ,

E0(h) = E0 +
N∑

j=1

h2jej +O(h2(N+1)) (9)

and

λ(x;h) = λ(x; 0) +
N∑

j=1

h2jλj(x) +O(h2(N+1)) (10)

uniformly w.r.t. x. Furthermore, the functions IRn 3 x 7→ λj(x) are smooth and verify :

∀α ∈ IN n, ∃Dα > 0; ∀x ∈ IRn, ‖∂α
x (λj(x)− ej)‖ ≤ Dα〈x〉−ρ−|α|. (11)

Before recalling some results from [KMW1], we introduce some more notation. Set H =
L(L2(IRnN0

y )). For δ ≥ 0 and m ∈ IR, we consider the class Sm
δ (H) of symbols a ∈

C∞(IR2n
xξ ;H) which have the property :

∀α, β ∈ IN n, ∃Dαβ > 0; ∀(x, ξ) ∈ IR2n, ‖∂α
x∂

β
ξ a(x, ξ)‖ ≤ Dαβ〈x〉m−δ|α|.
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The class S0
0(H) of bounded symbols is simply denoted by S(H). A family a(h) ∈ Sm

δ (H)
is called h-admissible if there exists an asymptotic expansion of the form

a(h) ∼
∑
j

hjaj

where the coefficients aj ∈ Sm−jδ
δ (H). For a given phase function φ : IR2n −→ IR and

a given h-admissible family of symbols a(h) ∈ Sm
δ (H), we introduce the Fourier integral

operator (FIO) defined by(
J(φ, a)f

)
(x) = (2πh)−n

∫
eih−1(φ(x,ξ)−x′·ξ)a(x, ξ;h)f(x′)dx′dξ, (12)

where f ∈ S(IRn
x;L2(IRnN0

y )). As a special case, the h-pseudodifferential operator a(x, hD;h),
with D = −i∂x, is defined by the same formula where the phase function φ is given by
φ(x, ξ) = x · ξ. For the phases φ± we introduce below, we denote the corresponding FIO
by J±(b), for a given symbol b.

Let us also define incoming (-) and outgoing (+) regions in the phase space by

Ψ±(ε, d, R) =
{
(x, ξ) ∈ IR2n; |x| > R, |ξ|2 > d, ±x · ξ ≥ (−1 + ε)|x| |ξ|

}
,

for ε, d, R > 0, and spaces of symbols supported in these regions by

Sm
±,δ(ε, d, R;H) =

{
a ∈ Sm

δ (H); supp a ⊂ Ψ±(ε, d, R)
}
.

Set :
Sm
±,δ(H) =

⋃
ε,d,R>0

Sm
±,δ(ε, d, R;H).

We also consider real-valued symbols, just replacing H by IR in the previous definitions.

Now we introduce the coherent states operators. For (x0, ξ0) ∈ IRn
x×IRn

ξ \{0}, we define :

Uh(x0, ξ0) = Uhe
ih−1/2(x·ξ0−x0·Dx), (13)

where Uh is the isometry of L2(IRn
x;L2(IRnN0

y )) given by

(Uhf)(x) = h−n/4f(h−1/2x),

and where Dx = −i∂x. To see how these operators act, we apply them to the h-pseudo-
differential operator b(x, hD) associated to a bounded symbol b ∈ S(H). Then, we observe
that

U∗
hb(x, hD)Uh = b(h1/2x, h1/2D),

Uh(x0, ξ0)
∗b(x, hD)Uh(x0, ξ0) = b(h1/2x+ x0, h

1/2D + ξ0). (14)

By Φt (respectively Φt
0), we denote the Hamiltonian flow of the Hamilton function p(x, ξ) =

|ξ|2 + λ(x; 0)− E0 (respectively p0(x, ξ) = |ξ|2) and we set :

∀(x, ξ) ∈ IRn
x × IRn

ξ \ {0}, Φt(x, ξ) =
(
q(t;x, ξ), p(t;x, ξ)

)
.
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Definition 2.2 For an energy E ∈ IR, we denote by p−1(E) the energy shell

p−1(E) ≡
{
(x, ξ) ∈ IR2n; p(x, ξ) = E

}
.

The energy E is non-trapping for the Hamilton function p(x, ξ) = |ξ|2 + λ(x; 0)− E0 if

∀(x, ξ) ∈ p−1(E), lim
t→+∞

‖Φt(x, ξ)‖ = ∞ and lim
t→−∞

‖Φt(x, ξ)‖ = ∞,

where ‖ · ‖ denote the norm of IR2n. An open interval J is non-trapping for the Hamilton
function p(x, ξ) = |ξ|2 + λ(x; 0) − E0 if each E ∈ J is. A function χ ∈ C∞

0 (IR; IR) is
non-trapping if its support is included in a finite reunion of non-trapping open intervals.

Thanks to the short-range property (11) of the potential λ(x; 0) − E0, the classical flow
satisfies the following properties.

Proposition 2.3 We use the previous notation.

1. For all ε, d > 0, there exist positive constants C,R0 > 0 such that, for all R > R0

and all (x, ξ) ∈ Ψ±(ε, d, R), one has :

|q(t;x, ξ)| ≥ C−1(|x| ± t|ξ|) and Φt(x, ξ) ∈ Ψ±(ε/2, d/2, R/C), (15)

for all ±t > 0.

2. Let I be a compact interval included in some non-trapping interval, w.r.t. the flow
Φt. Let ε, d, R > 0. For all 0 < ε′ < ε and for all R0 > 0, there exist d0, C, T > 0
such that, for all (x, ξ) ∈ Ψ±(ε, d, R) ∩ p−1(I),

|q(t;x, ξ)| ≥ C−1(|x| ± t|ξ|) and Φt(x, ξ) ∈ Ψ±(ε′, d0, R0), (16)

for all ±t ≥ T .

3. For all ε, R0 > 0, there exist d0, T > 0 such that

(x, ξ) ∈
{
(y, η) ∈ IR2n; |y| ≤ R0

}
∩ p−1(I)

implies that
Φt(x, ξ) ∈ Ψ±(2− ε, d0, R0) (17)

for ±t > T .

Proof : These results are probably not new but we did not find a reference in the literature
where they are precisely proved. Then we propose a proof in appendix. 2

Furthermore, the classical wave operators

Ωcl
a,±(x, ξ) = lim

t→±∞
Φ−t◦Φt

0(x, ξ), for x ∈ IRn, ξ ∈ IRn \ {0}, (18)
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exist (cf. [RS3]).

In order to compute the classical limit of the operator SAD, we need to establish suitable
microlocal properties of the propagator eih−1tP AD(h) of PAD. To this end, we follow the
WKB method developed in [KMW1] for the construction of parametrices (see also [IK]).
Recall that the adiabatic wave operators are given by

ΩAD
± (h) = s− lim

t→±∞
eih−1tP AD(h)e−ih−1tPa(h)Π0(h).

The main point is the approximation, for ±t large, of the wave operators ΩAD
± (h) by

operators of the form

W±(t;h) = eih−1tP AD(h)J(φ±, a±(h))e−ih−1tPa(h)Π0(h),

where J(φ±, a±(h)) is a suitably chosen FIO. In others words, we require that

ΩAD
± (h) = s− lim

t→±∞
W±(t;h).

On a formal level, we obtain

ΩAD
± (h) = W±(t;h) +

∫ ±∞

t

dW±

ds
(s;h)ds.

Demanding that the integral is small, this suggests that we should choose the phases φ±
and the amplitudes a±(h) in such a way that they obey :

PAD(h)
(
eih−1φ±a±(h)

)
= eih−1φ±a±(h)

(
|ξ|2 + E0(h)

)
.

Trying
a±(h) = Π(x;h)ã±(h)

as an ansatz, we see that the symbols ã±(h) must verify :

e−ih−1φ±
(
−h2∆x+[−h2∆x,Π(x;h)]+λ(x;h)

)(
eih−1φ± ã±(h)

)
− ã±(h)

(
|ξ|2+E0(h)

)
= 0.

We expand ã±(h) as an asymptotic sum of symbols in increasing order of powers of h :

ã±(h) ∼
∑
j

hj ãj,±. (19)

Using the expansions in powers of h of E0(h), λ(x;h) and Π(x;h) (cf. (9), (10) and
Proposition 2.1), one may rewrite the condition (19) in the following form :∑

j

hjcj = 0.

Requiring that all these symbols cj vanish, we arrive at the following so-called eikonal
equation for the phases φ± :

|∇xφ±(x, ξ)|2 + λ(x; 0) = |ξ|2 + E0,

12



and the following transport equations for the amplitudes ãj,± :(
2(∇xφ±)(x, ξ) · ∇x + 2(∇xφ±)(x, ξ) · (∇xΠ)(x; 0) + (∆xφ±)(x, ξ)

)
ã0,±(x, ξ) = 0,(

2(∇xφ±)(x, ξ) · ∇x + 2(∇xφ±)(x, ξ) · (∇xΠ)(x; 0) + (∆xφ±)(x, ξ)
)
ãk,±(x, ξ) = bk(x, ξ),

for k ≥ 1 and where the symbol bk only depends on the ãj,± for j < k.

In [KMW1], these equations are solved in the regions Ψ±(ε, d, R), for ε, d, R > 0 and
R large enough. The phases φ± ∈ C∞(IR2n) are constructed such that they satisfy the
eikonal equation in the region Ψ±(ε, d, R) and that they obey : for all δ1, δ2 > 0, with
δ1 + δ2 = ρ− 1, and for all α, β ∈ IN n, there exists a contant Cαβ > 0 such that∣∣∣∂α

x∂
β
ξ

(
φ±(x, ξ)− x · ξ

)∣∣∣ ≤ CαβR
−δ1〈x〉−δ2−|α|, ∀(x, ξ) ∈ IR2n. (20)

For R large enough, in particular, the maps x 7→ ∇ξφ±(x, ξ) are global diffeomorphisms
and we denote their inverses by x±(·, ξ). This may be expressed in terms of the following
identity :

x = x±
(
∇ξφ±(x, ξ), ξ

)
, ∀(x, ξ) ∈ IR2n.

Likewise, for large R, the maps ξ 7→ ∇xφ±(x, ξ) are global diffeomorphisms and we denote
their inverses by ξ±(x, ·). The analogous identity is :

ξ = ξ±
(
x,∇xφ±(x, ξ)

)
, ∀(x, ξ) ∈ IR2n.

Let us define the maps :

κ1,± : (x, ξ) 7→
(
∇ξφ±(x, ξ), ξ

)
,

κ2,± : (x, ξ) 7→
(
x,∇xφ±(x, ξ)

)
.

These diffeormorphismes κ1,±, κ2,± and their inverses “conserve” incoming and outgoing
regions in the following sense : for all 0 < ε′0 < ε0, 0 < d′0 < d0 and 0 < R′

0 < R0, we can
find R large enough such that, for σ = ±1,

κ1,σ

(
Ψ±(ε0, d0, R0)

)
⊂ Ψ±(ε′0, d

′
0, R

′
0), κ2,σ

(
Ψ±(ε0, d0, R0)

)
⊂ Ψ±(ε′0, d

′
0, R

′
0) (21)

and

κ−1
1,σ

(
Ψ±(ε0, d0, R0)

)
⊂ Ψ±(ε′0, d

′
0, R

′
0), κ−1

2,σ

(
Ψ±(ε0, d0, R0)

)
⊂ Ψ±(ε′0, d

′
0, R

′
0). (22)

The Hamiltonian flow Φt, associated to the Hamilton function |ξ|2 +λ(x; 0), has a similar
property :

∀ ± t ≥ 0, Φt
(
Ψ±(2ε0, 2d0, 2R0)

)
⊂ Ψ±(ε0, d0, R0), (23)

for R0 large enough (cf. (15)). The diffeomorphisms κ1,± and κ2,± also allow us to express
the classical wave operators. For all (x, ξ) in the region Ψ±(2ε, 2d, 2R), we have :

Ωcl
a,±(x, ξ) =

(
x±(x, ξ),∇xφ±

(
x±(x, ξ), ξ

))
(24)
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and if (x, ξ) ∈ Ψ±(2ε, 2d, 2R) ∩ ImΩcl
±, in particular, we can invert this relation :

(Ωcl
a,±)−1(x, ξ) =

(
∇ξφ±

(
x, ξ±(x, ξ)

)
, ξ±(x, ξ)

)
. (25)

On the other hand, the amplitudes ã±(h) are h-admissible symbols in the class S0
±,1(ε, d, R;H)

given by
ã±(h) ∼

∑
j

hjχ±ãj,±

where the functions χ± ∈ C∞(IR2n) satisfy :

suppχ± ⊂ Ψ±(ε, d, R),

χ± ≡ 1 on Ψ±(2ε, 2d, 2R).

Their principal symbols verify the following relation for (x, ξ) ∈ Ψ±(2ε, 2d, 2R) :

ã0,±(x, ξ) =
∣∣∣det ∂x∂ξφ±(x, ξ)

∣∣∣1/2
G±(x, ξ), (26)

for R large enough and with G±(x, ξ) ∈ L(L2(IRnN0
y )). Furthermore, for all ε′ > ε, d′ > d,

R′ > R, there exists C > 0 such that, for (x, ξ) ∈ Ψ±(ε′, d′, R′), the operators G±(x, ξ)
satisfy :

‖G±(x, ξ)− I‖ ≤ C〈x〉1−ρ, (27)

where I stands for the identity operator on L2(IRnN0
y ). The choice of R implies in particular

their invertibility (See [KMW1] for more details about the operators G±(x, ξ)). In order
to control the error terms, let us consider the following symbols :

r̃±(h) = e−ih−1φ±
(
−h2∆x+[−h2∆x,Π(x;h)]+λ(x;h)

)(
eih−1φ± ã±(h)

)
− ã±(h)

(
|ξ|2+E0(h)

)
.

(28)
The family of symbols h−1r̃±(h) is uniformly bounded in S−1

±,1(ε, d, R;H) and verifies :

∀α, β ∈ IN n, ‖∂α
x∂

β
ξ r̃±(x, ξ;h)‖ = Oαβ(h∞〈x〉−∞) (29)

in the region Ψ±(2ε, 2d, 2R). By Oαβ(h∞〈x〉−∞) we mean Oα,β,N(hN〈x〉−N), for allN ∈ IN .
Finally, we remark that the operator-valued symbols

a±(x, ξ;h) = Π(x;h)ã±(x, ξ;h), r±(x, ξ;h) = Π(x;h)r̃±(x, ξ;h)

have the same properties as ã±(x, ξ;h) and r̃±(x, ξ;h), according to Proposition 2.1.

Thanks to the phases φ± and the amplitudes a±(h), one has :

Proposition 2.4 ([KMW1]) Choose ε, d > 0 and let 1I]2d;+∞[ denote the characteristic
function of the interval ]2d,+∞[. Let R = R(ε, d) large enough. For the phases φ± and
for a symbol b(h), we denote J(φ±, b(h)) (cf. (12)) simply by J±(b(h)).
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1. On the range of the operator 1I]2d;+∞[(−h2∆x), one has :

ΩAD
± (h) = s− lim

t→±∞
W±(t;h)

with :
W±(t;h) = eih−1tP AD(h) J±(a±(h)) e−ih−1tPa(h)Π0(h),

where Pa(h)Π0(h) = (−h2∆x + E0(h))Π0(h) and J±(a±(h)) = J(φ±, a±(h)).

2. Furthermore, for all functions f ∈ Im1I]2d;+∞[(−h2∆x), one has :

ΩAD
± (h)f = W±(±t;h)f+ih−1

∫ ±∞

±t
eih−1sP AD(h) J(φ±, r±(h)) e−ih−1sPa(h)Π0(h)f ds,

where the functions h−1r±(h) are uniformly bounded in S−1
±,1(ε, d, R;H) and have the

property (29) in the region Ψ±(2ε, 2d, 2R).

3. Considering a symbol

b± ∈ S±
(
4ε, 4d, 4R; IR

)
∪ C∞

0

(
IRn

x × IRn
ξ \ {0}; IR

)
,

there exists T > 0 such that

t > T =⇒
∥∥∥(ΩAD

± (h)−W±(±t;h)
)
b±(x, hD)

∥∥∥ = O(h∞〈t〉−∞).

Here b±(x, hD) is the h-pseudodifferential operator with symbol b±.

Proof : see [KMW1]. 2

Making use of Proposition 2.4, the action of the wave operators ΩAD
± on quantum observ-

ables and on coherent states is studied in [KMW1] (cf. Theorems 5.3 and 5.4 in [KMW1]).
In Section 4, some equivalent results are obtained for the adiabatic scattering operator
SAD.

3 Propagation estimates for PAD.

In this section, we establish some estimates on the adiabatic propagation that we use in
Section 4. The potentials still verify the condition (Dρ) for ρ > 1. Our results are similar
to those in [W1], [W2], and [W3], and we will essentially use the same arguments as in
these references.

Except the pseudodifferential operators, the FIO we consider in this section, are con-
structed with the phases φ±, introduced in Section 2, and we denote them by J±(b), for
a given symbol b (cf. (12)).

We first recall that one has a semiclassical control on the boundary value of the adiabatic
resolvent of RAD(z;h) = (PAD(h)− z)−1 :
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Theorem 3.1 ([KMW1]) Under assumption (Dρ), ρ > 0, for the potentials and assump-
tion (HS(h)) for the simple eigenvalue E0 (cf. Definition 1.1), let E ∈]E0; +∞[ be a
non-trapping energy for the Hamilton function |ξ|2 + λ(x; 0) (cf. Definition 2.2). For all
s > 1/2, one has :

‖〈x〉−sRAD(λ± i0;h)〈x〉−s‖ = O(h−1)

uniformly w.r.t. λ close enough to E and h small enough.

Proof : See Theorem 3.2 and Corollary 3.3 in [KMW1]. 2

We also need a semiclassical Egorov Theorem (cf. [W4]) for the propagator e−ih−1tP AD(h),
which essentially results from the arguments in [Ro] (see also [W4]).

Theorem 3.2 Let c ∈ S(H) be a bounded symbol. Denote by Φt the flow associated to
the Hamilton function |ξ|2 + λ(x; 0). Under assumption (Dρ) with ρ > 1 for potentials,
the operator

Π(h) eih−1tP AD(h) c(x, hD) e−ih−1tP AD(h) Π(h)

is an h-pseudoodifferential operator with bounded symbol c(t;h) ∈ S(H), for all t. Fur-
thermore, this symbol may be expanded asymptoticaly as

c(t;h) ∼
∞∑

k=0

hkck(t),

where the support of the bounded symbols ck(t) ∈ S(H) satisfy supp ck(t) ⊂ supp(c◦Φt).
Finally, the principal symbol is given by c0(t)(x, ξ) = Π(x; 0)(c◦Φt)(x, ξ)Π(x; 0).

Proof : See [Ro]. 2

Remark 3.3 With the same proof, one obtains a similar result for the operator PaΠ0. In
fact, this is well known since Pa(h)Π0(h) = (−h2∆x + E0(h))Π0(h) (cf. [W4] and [Ro]).

On the other hand, we will also use some composition properties of FIO and pseudodif-
ferential operators (cf. [W1]), which are collected in the following proposition :

Proposition 3.4 Let φ± be the phases constructed in Section 2 and recall that we simply
note a FIO J(φ±, b) by J±(b), for a given symbol b. For all 0 < ε′0 < ε0, 0 < d′0 < d0 and
0 < R′

0 < R0, one can find R large enough such that the following properties holds.

Let a±, b± ∈ S0
±,1(ε0, d0, R0;H) h-admissible symbols. There exists h-admissible symbols

c±(h), d±(h), e±(h), f±(h) ∈ S0
±,1(ε

′
0, d

′
0, R

′
0;H) such that

a±(x, hD)J±(b±) = J±(c±(h)),

c0,±(x, ξ) = a0,±
(
x,∇xφ±(x, ξ)

)
b0,±(x, ξ),
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J±(a±)b±(x, hD) = J±(d±(h)),

d0,±(x, ξ) = a0,±(x, ξ)b0,±
(
∇ξφ±(x, ξ), ξ

)
,

J±(a±)J±(b±)∗ = e±(x, hD),

e0,±(x, ξ) = a0,±
(
x, ξ±(x, ξ)

)
b0,±

(
x, ξ±(x, ξ)

)∗∣∣∣det
(∂ξ±
∂ξ

(x, ξ)
)∣∣∣,

J±(a±)∗J±(b±) = f±(x, hD),

f0,±(x, ξ) = a0,±
(
x±(x, ξ), ξ

)∗
b0,±

(
x±(x, ξ), ξ

)∣∣∣det
(∂x±
∂x

(x, ξ)
)∣∣∣.

We use the subscript 0 for the principal symbol. For each symbol g±(h) = c±(h), d±(h),
e±(h), f±(h) and for all N ∈ IN , we write :

g±(h) =
N∑

j=0

hjgj,± + hN+1ĝ±(h).

For GN,±(h) = ĝ±(x, hD) or J±(ĝ±(h)), according to the considered composition, one has,
for all k ∈ ZZ,

‖〈x〉N+kGN,±(h)〈x〉−k‖ = O(1), (1)

uniformly w.r.t. h.

These composition properties still hold for bounded symbols in S(H). In this case, the
remainders are :

‖GN,±(h)‖ = O(1),

uniformly w.r.t. h.

Remark 3.5 Recall that, for bounded symbols, pseudodifferential operators and FIO are
bounded operators on the weight spaces L2

s(IR
n;H) ≡ L2(IRn;H; 〈x〉2sdx).

Proof : The arguments of [W1] still hold if we replace real-valued by operator-valued
symbols (cf. [Ba]). The control on supports is ensured by (21) and (22). About the bounded
symbols the arguments in [Ro] apply. 2

Now let us give propagation estimates uniformly w.r.t. h.

Proposition 3.6 Let χ ∈ C∞
0 (]E0; +∞[; IR) be non-trapping for the Hamilton function

|ξ|2 + λ(x; 0) (cf. Definition 2.2).

1. Then, one has : ∥∥∥〈x〉−1χ
(
PAD(h)

)
e−ih−1tP AD(h)〈x〉−1

∥∥∥ = O(〈t〉−1) (2)

for all t ∈ IR, uniformly w.r.t. h.
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2. For all symbols b± ∈ S0
±,1(IR), for all k ∈ IN , one has :∥∥∥〈x〉−1−kχ

(
PAD(h)

)
e−ih−1tP AD(h)b±(x, hD)〈x〉k

∥∥∥ = O(〈t〉−1), (3)

for all ±t > 0, uniformly w.r.t. h.

3. For d0, R± > 0 and ε1, ε2 > 0 such that ε1 + ε2 > 2, we consider symbols bj,± ∈
S0
±,1(εj, d0, R±; IR), 1 ≤ j ≤ 2. For all k ∈ IN , one has :∥∥∥〈x〉kb1,∓(x, hD)χ

(
PAD(h)

)
e−ih−1tP AD(h)b2,±(x, hD)〈x〉k

∥∥∥ = O(〈t〉−1), (4)

for all ±t ≥ 0, uniformly w.r.t. h. The condition ε1 +ε2 > 2 implies that the symbols
b1,∓ and b2,± have disjoint supports.

Remark 3.7 We remark that the estimates (3) and (4) in Proposition 3.6 still hold if
a microlocalisation b±(x, hD) is replaced by a FIO J±(b±(h)). Indeed, if we have b± ∈
S0
±,1(ε0, d0, R0; IR) then, for all 0 < ε′′0 < ε′0 < ε0, 0 < d′′0 < d′0 < d0, and 0 < R′′

0 < R′
0 <

R0, we can find a symbol τ± ∈ S0
±,1(ε

′′
0, d

′′
0, R

′′
0; IR) with value 1 in the region Ψ±(ε′0, d

′
0, R

′
0).

Thanks to Proposition 3.4, we have :

(1− τ)(x, hD)J±(b±(h)) = J±(b̂±(h))

where the family of symbols h−N b̂±(h) is uniformly bounded in the space S−N
±,1 (ε′0, d

′
0, R

′
0; IR),

for all N . From the estimates of Proposition 3.6 for τ(x, hD), we deduce the same esti-
mates for τ(x, hD)J±(b±(h)) thanks to Remark 3.5, and thus for J±(b±(h)).

For the same reason, these estimates (3) and (4) still hold for H-valued symbols.

Proof : We follow the proof in [W2]. Let us first prove the first estimate (2). Using the
operator AAD(h) = Π(h)A(h)Π(h) where

A(h) =
x · h∇x + h∇x · x

2i
,

we have, according to Proposition 2.1,

i[PAD(h), AAD(h)] = 2PAD(h) + VAD(h)

where the operator VAD(h) is of the form :

VAD(h) = O(〈x〉−ρ) · h(∇xΠ)(h) +O(〈x〉−ρ)

uniformly w.r.t. h and with ρ > 1. Pointwise in S(IRn
x;L2(IRnN0

y )), we may write :

AAD(h)e−ih−1tP AD(h) = e−ih−1tP AD(h)AAD(h) + 2tPAD(h)e−ih−1tP AD(h)

+
∫ t

0
e−ih−1(t−s)P AD(h)VAD(h)e−ih−1sP AD(h)ds
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and, therefore,
PAD(h)e−ih−1tP AD(h)

is given by

=
1

2t

(
[AAD(h), e−ih−1tP AD(h)]−

∫ t

0
e−ih−1(t−s)P AD(h)VAD(h)e−ih−1sP AD(h)ds

)
. (5)

For a real λ, with |λ| large enough, one can verify that the operator (AAD(h) + iλ)−1

conserve PAD(h)’s domain (cf. [J]). Using the functional calculus of Helffer and Sjöstrand
(cf. [HS]), we infer that the operator

(AAD(h) + iλ)χ
(
PAD(h)

)
(AAD(h) + iλ)−1

is bounded. Thanks to Theorem 3.1, the operators 〈x〉−µ and 〈x〉−µh∇xΠ(h) for µ >
1/2 are PAD(h)-smooth locally on the support of χ (cf. [RS4]). Then there exists a h-
independent constant C, such that∫ +∞

−∞
‖〈x〉−µχ

(
PAD(h)

)
e−ih−1tP AD(h)f‖2dt ≤ C‖f‖2

∫ +∞

−∞
‖〈x〉−µh∇xΠ(h)χ

(
PAD(h)

)
e−ih−1tP AD(h)f‖2dt ≤ C‖f‖2

for all functions f ∈ L2(IRn
x;L2(IRnN0

y )). It follows from (5) that, uniformly w.r.t. h,

‖(AAD(h) + i)−1χ
(
PAD(h)

)
e−ih−1tP AD(h)(AAD(h) + i)−1‖ = O(〈t〉−1).

Now we choose a non-trapping function θ ∈ C∞
0 (]E0; +∞[; IR) such that χ = χθ. The

operator
〈x〉−1θ

(
PAD(h)

)
AAD(h)

is bounded (cf. [J]). This yields the first estimate (2).

According to [W1], one has, under the conditions of Proposition 3.6, similar estimates as
(3) and (4) for the free propagator, i.e., for all integers k, l ≥ 0, one has :

‖〈x〉−l−ke−ih−1tPa(h)Π0(h)b±(x, hD)〈x〉k‖ = O(〈t〉−l), (6)

and :
‖〈x〉kb1,∓(x, hD)e−ih−1tPa(h)Π0(h)b2,±(x, hD)〈x〉k‖ = O(〈t〉−l), (7)

for all ±t > 0, uniformly w.r.t. h.

Next we prove the second estimate (3) in Proposition 3.6. Let b± ∈ S0
±,1(ε0, d0, R0; IR).

Choose ε, d > 0 small enough such that 3ε < ε0 and 2d < d0. Let

ε′0 ∈]3ε; ε0[, d
′
0 ∈]2d; d0[ and R′

0 ∈]0;R0[.

Pick R large enough such that the properties of Section 2 hold and that Proposition 3.4
applies. Thanks to the ellipticity of the principal symbol ã0,± of

ã±(h) ∼
∑
j

hj ãj,±,
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in the region Ψ±(2ε, 2d, 2R) (cf. (26)), there exist (cf. proof of Lemma 4.5 in [W1] and
Proposition 3.4 in the present work) bounded symbols

b̃±(h) ∼
∑
j

hj b̃j,±,

in S0
±,1(ε

′
0, d

′
0, R

′
0;H) such that, for all N , one has :

b±(x, hD) = J±
(
ã±(N ;h)

)
J±
(
b̃±(N ;h)

)∗
+ hN+1RN,±(h) (8)

with :

ã±(N ;h) =
N∑

j=0

hj ãj,± and b̃±(N ;h) =
N∑

j=0

hj b̃j,±,

and where the operators RN,±(h) verify the property (1), i.e. :

‖〈x〉N+kRN,±(h)〈x〉−k‖ = O(1),

for all k ∈ ZZ. By the definition of the symbols r̃±(h) (cf. (28)),

Π(h)e−ih−1tP AD(h)J±
(
ã±(N ;h)

)
= Π(h)J±

(
ã±(N ;h)

)
e−ih−1tPa(h)Π0(h)

−ih−1
∫ t

0
Π(h)e−ih−1sP AD(h)J±

(
r̃±(N ;h)

)
e−ih−1(t−s)Pa(h)Π0(h)ds. (9)

Using the functional calculus of Helffer and Robert (cf. [HR]), we can show that the
operator χ(PAD(h)) is an h-pseudoodifferential operator with symbol in S0

1(H) (cf. [W1]).
The operators χ(PAD(h)) and J±(ã±(N ;h)) are bounded on the weight spaces L2

s(IR
n;H),

for all s ∈ IR. Thus, for all k ∈ IN , one has, according to (6) and to Remark 3.7,

‖〈x〉−1−kχ
(
PAD(h)

)
J±
(
ã±(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗
〈x〉k‖ = O(〈t〉−1),

for ±t > 0. Thanks to the first estimate (2) in Proposition 3.6 and to the property (1),
the term ∥∥∥〈x〉−1−kχ

(
PAD(h)

)
e−ih−1tP AD(h)RN,±(h)〈x〉k

∥∥∥,
for all N ≥ k + 1, is less than∥∥∥〈x〉−1−kχ

(
PAD(h)

)
e−ih−1tP AD(h)〈x〉−1

∥∥∥ · ∥∥∥〈x〉N−kRN,±(h)〈x〉k
∥∥∥ = O(〈t〉−1),

for ±t > 0. To evaluate the integral in (9), we write :

r̃±(N ;h) = r̃±,1(N ;h) + r̃±,2(N ;h) + r̃±,3(N ;h) (10)

where r̃±,1(N ;h) is supported in Ψ±(2ε, 2d, 2R), the second term r̃±,2(N ;h) in{
(x, ξ) ∈ IR2n; |x| ≤ 3R, |ξ|2 ≤ 3d

}
,

and where the support of the third term r̃±,3(N ;h) neither intersects Ψ±(3ε, 3d, 3R) nor{
(x, ξ) ∈ IR2n; |x| ≤ 2R, |ξ|2 ≤ 2d

}
.
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In particular, the operator h−1〈x〉NJ±(r̃±,1(N ;h))〈x〉 is O(hN), thanks to (29). The sym-
bols h−1〈x〉r̃±,3(N ;h) are uniformly bounded in S0

∓,1(2− 3ε, 2d, 2R). Due to the choice of
ε and ε′0, we have 2− 3ε+ ε′0 > 2. The compactly supported symbols h−1〈x〉r̃±,2(N ;h) are
uniformly bounded.

Now we use Remark 3.7 and the property (6) to obtain :∥∥∥h−1〈x〉J±
(
r̃±,j(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗
〈x〉k

∥∥∥ = O(〈t〉−3), (11)

for ±t > 0, j = 1, 2 and N ≥ k + 3. Applying (7) to the symbols h−1〈x〉r̃±,3(N ;h) and
b̃±(N ;h), we deduce the estimate (11) also for j = 3. Thanks to the first estimate (2) in
Proposition 3.6, we obtain, for N ≥ k + 3,

∥∥∥h−1
∫ t

0
〈x〉−1−kχ

(
PAD(h)

)
e−ih−1sP AD(h)J±

(
r̃±(N ;h)

)
e−ih−1(t−s)Pa(h)Π0(h)J±

(
b̃±(N ;h)

)∗
〈x〉k ds

∥∥∥
≤ C

∫ t

0
〈s〉−1〈t− s〉−3ds = O(〈t〉−1)

for ±t > 0 (we have used 〈s〉−1〈t − s〉−1 ≤ c〈t〉−1). This finishes the proof of the second
estimate (3).

We come to prove the third estimate (4) in Proposition 3.6. We use the “factorisation”
(8) for b2,± and we choose ε, d, R > 0 as before. For

0 < ε′2 < ε2 with ε′2 + ε1 > 2, 0 < d′0 < d0 and R < R′
± < R±,

we consider symbols b̃±(h) ∈ S0
±,1(ε

′
2, d

′
0, R

′
±;H) such that the decomposition (8) is valid

for b2,±.

Since the second estimate (3) in Proposition 3.6 also holds for the adjoint operator, we
have, for all k ∈ IN ,∥∥∥〈x〉kb1,∓(x, hD)χ

(
PAD(h)

)
e−ih−1tP AD(h)〈x〉−1−k

∥∥∥ = O(〈t〉−1), (12)

for all ±t > 0, uniformly w.r.t. h. For N ≥ 2k + 1, this yields, due to (1),∥∥∥〈x〉kb1,∓(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)RN,±(h)〈x〉k

∥∥∥ = O(〈t〉−1),

for all ±t > 0.

Now we write (9) for b2,±. Due to Proposition 3.4, we have :

b1,∓(x, hD)χ
(
PAD(h)

)
J±
(
ã±(N ;h)

)
= J±

(
b̃1,∓(N ;h)

)
+ hN+1AN,±(h)

where the operators AN,±(h) verify (1). Choosing R larger if necessary, we may suppose (cf.
Proposition 3.4) that b̃1,∓(N ;h) ∈ S0

∓,1(ε
′
1, d0/2, R∓/2) for some ε′1 < ε1 with ε′1 + ε′2 > 2.
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For all k ∈ IN and all N ≥ 2k + 1, using (1) for AN,±(h) and (6), this yields :∥∥∥〈x〉kAN,±(h)e−ih−1tPa(h)Π0(h)J±
(
b̃±(N ;h)

)∗
〈x〉k

∥∥∥ = O(〈t〉−1),

for all ±t > 0. Thanks to inequality ε′1 + ε′2 > 2, we may apply (7) to b̃1,∓(N ;h) and
b̃±(N ;h). This gives :∥∥∥〈x〉kJ±(b̃1,∓(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗
〈x〉k

∥∥∥ = O(〈t〉−1),

for all ±t > 0.

We now have to evaluate the contribution of the integral in (9). We split the symbol
r̃±(N ;h) according to (10). Because of (6), we obtain, for all k ∈ IN and all N ≥ 2k + 5,∥∥∥〈x〉kJ±(r̃±,j(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗
〈x〉k

∥∥∥ = O(〈t〉−3), (13)

where ±t > 0 and j = 1, 2. Due to (7) and the choice of ε, Estimate (13) is still valid for
j = 3. Thus one has, thanks to (12), for N ≥ 2k + 5,

∥∥∥h−1
∫ t

0
〈x〉kb1,∓(x, hD)χ

(
PAD(h)

)
e−ih−1sP AD(h)J±

(
r̃±(N ;h)

)
e−ih−1(t−s)Pa(h)Π0(h)J±

(
b̃±(N ;h)

)∗
〈x〉k ds

∥∥∥
≤ C

∫ t

0
< s >−1< t− s >−3 ds = O(〈t〉−1)

for ±t > 0 and uniformly w.r.t. h. This finishes the proof of Proposition 3.6. 2

Corollary 3.8 Assume the same conditions as in Proposition 3.6.

1. For N ∈ IN , we have :∥∥∥〈x〉−Nχ
(
PAD(h)

)
e−ih−1tP AD(h)〈x〉−N

∥∥∥ = O(〈t〉−N), (14)

for all t ∈ IR and uniformly w.r.t. h.

2. For all symbols b± ∈ S0
±,1(IR) and for all k,N ∈ IN , we have :∥∥∥〈x〉−N−kχ

(
PAD(h)

)
e−ih−1tP AD(h)b±(x, hD)〈x〉k

∥∥∥ = O(〈t〉−N), (15)

for all ±t > 0 and uniformly w.r.t. h.

3. For d0, R± > 0 and ε1, ε2 > 0 such that ε1 + ε2 > 2, assume that the symbols
bj,± ∈ S0

±,1(εj, d0, R±; IR), 1 ≤ j ≤ 2. Then, for all k,N ∈ IN , we have :∥∥∥〈x〉kb1,∓(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)b2,±(x, hD)〈x〉k

∥∥∥ = O(〈t〉−N), (16)

for all ±t ≥ 0 and uniformly w.r.t. h.
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Remark 3.7 is valid for the previous estimates.

Proof : The purpose is to improve the decay properties w.r.t. t. Let φ, θ ∈ C∞
0 (]E0; +∞[; IR)

be two non-trapping functions such that χ = χφ and φ = φθ. Putting

GAD
χ (t) = χ

(
PAD(h)

)
e−ih−1tP AD(h),

we write :
GAD

χ (t) = GAD
χ (t/2)θ

(
PAD(h)

)
GAD

φ (t/2). (17)

Using arguments from [W1], we show that, for all 0 < ε′3 < ε3 and for all N , we can split
θ(PAD(h)) into the following form :

θ
(
PAD(h)

)
= c+(x, hD) + c−(x, hD) + SN (18)

where the symbols c±(h) ∈ S0
±,1(H) verify :

supp c+ ⊂
{
(x, ξ);x·ξ ≥ (−1+ε′3)|x|·|ξ|

}
and supp c− ⊂

{
(x, ξ);−x·ξ ≥ (−1+2−ε3)|x|·|ξ|

}
and where the operator SN satisfies Estimate (1). Thanks to (17), (18), and Proposi-
tion 3.6, we mimick the induction in the proof of Theorem 5.1 in [W1], and then we arrive
at the claim. 2

For the next section, we need upper bounds of the form O(hN〈t〉−N). Adapting arguments
from [W1], [W2] and [W3] to the present situation and using the symbols ã±(h) and r̃±(h),
we are going to prove the following proposition :

Proposition 3.9 Let χ ∈ C∞
0 (]E0; +∞[; IR) be non-trapping for the Hamilton function

|ξ|2 + λ(x; 0) (cf. Definition 2.2).

1. Let d0, R± > 0 and ε1, ε2 > 0 such that ε1 + ε2 > 2. Let bj,± ∈ S0
±,1(εj, d0, R±; IR),

1 ≤ j ≤ 2. Then, for R+ +R− large enough and for all N ∈ IN , we have :∥∥∥b1,∓(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)b2,±(x, hD)

∥∥∥ = O(hN〈t〉−N), (19)

for all ±t ≥ 0.

2. Let ε0, d0, R0 > 0 and denote by B(R0) the set of all functions ψ ∈ C∞
0 (IR2n; IR)

such that
suppψ ⊂

{
(x, ξ) ∈ IR2n; |x| ≤ R0

}
.

Then, there exists R1 > 0 such that, for all ψ ∈ B(R0), for all b± ∈ S0
±,1(ε0, d0, R1; IR),

and for all N ∈ IN , we have :∥∥∥ψ(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)b±(x, hD)

∥∥∥ = O(hN〈t〉−N), (20)

for all ±t ≥ 0.

23



Remark 3.7 is valid for the previous estimates.

Proof : Again, similar estimates hold for the free operator Pa(h)Π0(h) = (−h2∆x +
E0(h))Π0(h) and we refer to [W1] for the proofs. Precisely, we have, for all symbols
b± ∈ S0

±,1(IR), for all N ∈ IN , and for ±t > 0,∥∥∥〈x〉−Ne−ih−1tPa(h)Π0(h)b±(x, hD)
∥∥∥ = O(〈t〉−N), (21)

uniformly w.r.t. h, and Estimates (19) and (20) in Proposition 3.9 hold if we replace
PAD(h) by Pa(h)Π0(h). Under the conditions of Proposition 3.9, we then have, on one
hand, ∥∥∥ψ(x, hD)e−ih−1tPa(h)Π0(h)b±(x, hD)

∥∥∥ = O(hN〈t〉−N), (22)

for all N ∈ IN and for ±t > 0, and∥∥∥b1,∓(x, hD)e−ih−1tPa(h)Π0(h)b2,±(x, hD)
∥∥∥ = O(hN〈t〉−N), (23)

for all N and for all ±t > 0, on the other hand.

First, we prove Estimate (20). Let b± ∈ S0
±,1(ε0, d0, R1; IR). To this end, choose ε, d > 0

small enough such that 3ε < ε′0 and 2d < d0. Let

ε′0 ∈]3ε; ε′0[, d
′
0 ∈]2d; d0[ and R0 > R′

0 > 0.

Pick R large enough so that the properties of Section 2 hold and that Proposition 3.4
applies. Let R1 > 2R and R′

1 ∈]2R;R1[. Using the ellipticity of the principal symbol ã0,±
of ã±(h), in the region Ψ±(2ε, 2d, 2R) (cf. (26)), and the proof of Proposition 3.6, we can
find bounded symbols

b̃±(h) ∼
∑
j

hj b̃j,±

in S0
±,1(ε

′
0, d

′
0, R

′
1;H) such that, for all N , the “factorisation” (8) holds and where the

operators RN,±(h) verify :
‖〈x〉NRN,±(h)‖ = O(1). (24)

Due to the definition of symbols r̃±(h) (cf. (28)), we may write (9). Using the functional
calculus of Helffer and Robert (cf. [HR]), the operator χ(PAD(h)) is seen to be an h-
pseudoodifferential operator whose symbol belongs to S0

1(H) (cf. [W1]). According to
Proposition 3.4, we then have :

ψ(x, hD)χ
(
PAD(h)

)
J±
(
ã±(N ;h)

)
= J±

(
ã′N,±(h)

)
+ hN+1AN,±(h)

where the symbols ã′N,±(h) are supported in the compact set κ−1
1,±(suppχ) and where the

operator AN,±(h) satisfy (24). Taking R′
1 (thus also R1) large enough, this yields, thanks

to (22), ∥∥∥J±(ã′N,±(h)
)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗∥∥∥ = O(hN〈t〉−N).

Now we consider (10) again. Recall that the operator

h−1〈x〉NJ±
(
r̃±,1(N ;h)

)
〈x〉
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is O(hN), that the symbols h−1〈x〉r̃±,3(N ;h) are uniformly bounded in S0
∓,1(2−3ε, 2d, 2R),

with 2 − 3ε + ε′0 > 2, and that the compactly supported symbols h−1〈x〉r̃±,2(N ;h) are
uniformly bounded (cf. proof of Proposition 3.6).

Making use of Remark 3.7 and Property (21), we obtain the following estimate :∥∥∥h−1〈x〉J±
(
r̃±,1(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗∥∥∥ = O(hN〈t〉−N).

Due to (22), for R′
1 large enough, it follows that∥∥∥h−1〈x〉J±
(
r̃±,2(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗∥∥∥ = O(hN〈t〉−N).

Using (23) for R′
1 large enough, we obtain the estimate∥∥∥h−1〈x〉J±
(
r̃±,3(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗∥∥∥ = O(hN〈t〉−N).

Since ψ is compactly supported, we deduce from the first property (14) in Corollary 3.8,
with k = 0, the following estimate :∥∥∥ψ(x, hD)χ

(
PAD(h)

)
h−1

∫ t

0
Π(h)e−ih−1sP AD(h)

J±
(
r̃±(N ;h)

)
e−ih−1(t−s)Pa(h)Π0(h)J±

(
b̃±(N ;h)

)∗
ds
∥∥∥

≤ ChN
∫ t

0
〈s〉−N〈t− s〉−Nds ≤ C ′hN〈t〉−N+1 (25)

where the constant C neither depends on h nor on t (we have used 〈s〉−2〈t−s〉−2 ≤ 〈t〉−2).
Thanks to (21) and to (24) for AN,±(h) on one hand, and thanks to the first estimate (14)
of Corollary 3.8, for k = 0, and to (24) on the other hand, we can write, for N ≥ 3,∥∥∥AN,±(h)e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗∥∥∥ = O(〈t〉−N) (26)

and ∥∥∥ψ(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)RN,±(h)

∥∥∥ = O(〈t〉−N),

uniformly w.r.t. h (we have used again Remark 3.7). Due to (8) and (9), these estimates
imply Estimate (20) in Proposition 3.9.

Next, we prove Estimate (19). Assume that it holds if R+ and R− are large enough. Then
we fix R∓ and choose R̃∓ and R± large enough such that Estimate (19) is valid (we treat
the cases of upper and lower indices simultanously). For b1,∓ ∈ S0

∓,1(ε1, d0, R∓; IR), we

write b1,∓ = b̃1,∓ + ψ with b̃1,∓ ∈ S0
∓,1(ε1, d0, R̃∓; IR) and

suppψ ⊂
{
(x, ξ) ∈ IR2n; |x| ≤ R̃∓ + 1

}
.

Thus Estimate (19) holds for b̃1,∓ et b2,±. Choosing R± large enough, we obtain the second
estimate (20) in Proposition 3.9 for ψ and b2,±. This yields the first estimate (19) for fixed
R∓. So we just have to prove it for R+ and R− large enough.
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We use the “factorisation” (8) for b2,± again. For

0 < ε′2 < ε2 with ε′2 + ε1 > 2, 0 < d′0 < d0, and R < R′
± < R±,

we consider symbols b̃±(h) ∈ S0
±,1(ε

′
2, d

′
0, R

′
±;H) such that the decomposition (8) holds for

b2,± and we choose ε, d, R as before. We shall show that∥∥∥b1,∓(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)J±

(
ã±(N ;h)

)
J±
(
b̃±(N ;h)

)∗∥∥∥ = O(hN〈t〉−N+1).

(27)
We write (9). First, we evaluate∥∥∥b1,∓(x, hD)χ

(
PAD(h)

)
J±
(
ã±(N ;h)

)
e−ih−1tPa(h)Π0(h)J±

(
b̃±(N ;h)

)∗∥∥∥.
To this end, we remark that, for 0 < ε′1 < ε1, the operators

b1,∓(x, hD)χ
(
PAD(h)

)
J±
(
ã±(N ;h)

)
have the following form :

J±
(
ã′±(N ;h)

)
+ hN+1A′

N,±(h),

where A′
N,±(h) satisfy (24) and where the symbols ã′±(N ;h)) are supported in some region

Ψ∓(ε′1, d
′
0, R

′
∓), with

ε′1 + ε′2 > 2, 0 < d′0 < d0, and 0 < R′
∓ < R∓.

As before, the operators A′
N,±(h) verify (26). Since ε′1 +ε′2 > 2, (23) applies if R′

∓ is chosen
large enough. The contribution of these two terms is then seen to be O(hN〈t〉−N).

To control the other term in (9), we use the decomposition (10). Again for R′
± large

enough, but now using (15) in Corollary 3.8 with k = 0, we obtain as before Estimate
(25), where ψ has been replaced by b1,±. This yields Estimate (27).

Writing the second estimate (15) of Corollary 3.8, with k = 0, and using it for the adjoint
operator, we obtain :∥∥∥b1,∓(x, hD)χ

(
PAD(h)

)
e−ih−1tP AD(h)〈x〉−N

∥∥∥ = O(〈t〉−N)

for ±t > 0. Using (24), this leads to∥∥∥b1,∓(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)RN,±(h)

∥∥∥ = O(〈t〉−N).

We deduce from (8) again and (9) the first estimate (19) in Proposition 3.9 for N − 1. 2

In Proposition 3.9, the symbols b1,±, b2,± and b± must be supported in a region where |x|
is large. Such a condition is not appropriate for the situation we consider in Section 4.
However, we can get rid of this condition by trading it for |t| large. This is precisely the
purpose of the following proposition :
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Proposition 3.10 Let χ ∈ C∞
0 (]E0; +∞[; IR) be non-trapping for the Hamilton function

|ξ|2 + λ(x; 0) (cf. Definition 2.2).

1. For all functions ψ1, ψ2 ∈ C∞
0 (IR2n; IR), there exists T > 0 such that, for all |t| > T

and for all N ∈ IN , we have :∥∥∥ψ1(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)ψ2(x, hD)

∥∥∥ = O(hN〈t〉−N). (28)

2. For all functions ψ ∈ C∞
0 (IR2n; IR) and all symbols b± ∈ S0

±,1(IR), there exists T > 0
such that, for all ±t > T and all N ∈ IN , we have :∥∥∥ψ(x, hD)χ

(
PAD(h)

)
e−ih−1tP AD(h)b±(x, hD)

∥∥∥ = O(hN〈t〉−N). (29)

3. Let d0, R± > 0 and ε1, ε2 > 0 such that ε1 + ε2 > 2. Let bj,± ∈ S0
±,1(εj, d0, R±; IR),

1 ≤ j ≤ 2. There exists T > 0 such that, for all ±t ≥ T and all N ∈ IN , we have :∥∥∥b1,∓(x, hD)χ
(
PAD(h)

)
e−ih−1tP AD(h)b2,±(x, hD)

∥∥∥ = O(hN〈t〉−N). (30)

We point out that Remark 3.7 is valid for the previous estimates.

Proof : First we take a non-trapping function θ ∈ C∞
0 (]E0; +∞[; IR) such that χ = χθ.

Using the functional calculus of Helffer and Robert (cf. [HR]), one can show that the
operator θ(PAD(h)) is an h-pseudoodifferential operator whose symbol is supported in
the support of θ◦p, where p(x, ξ) = |ξ|2 + λ(x; 0). Then we can write :

θ
(
PAD(h)

)
ψ2(x, hD) = b(x, hD) + VN

where b ∈ S0
1(H) and where VN satisfies :

‖〈x〉NVN‖ = O(hN). (31)

Because of Egorov’s theorem (Theorem 3.2), we obtain :

e−ih−1TP AD(h)θ
(
PAD(h)

)
ψ2(x, hD) = bT (x, hD)e−ih−1TP AD(h) + e−ih−1TP AD(h)VN + VN,T

where VN,T verifies the property (31), uniformly w.r.t. T , and where the support of the
symbol bT is contained in the support of b◦Φ−T . For some R0 > 0, the symbol b is
supported in {

(x, ξ) ∈ IR2n; |x| ≤ R0

}
.

For all R1 > 0, there exists, thanks to (17), some T1 > 0 such that, for all T ≥ T1, we
have :

ΦT (supp b) ⊂ Ψ+(1, d0, R1)

for some d0 > 0. This yields :

supp bT ⊂ Ψ+(1, d0, R1).
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Choosing R1 large enough, we deduce, from (20) in Proposition 3.9, the following estimate
: ∥∥∥ψ1(x, hD)χ

(
PAD(h)

)
e−ih−1(t−T1)P AD(h)bT1(x, hD)

∥∥∥ = O(hN〈t〉−N),

for all t > T1. Since VN,T and VN verify (31), their contribution is also O(hN〈t〉−N),
according to (14) in Corollary 3.8. This yields Estimate (28) for positive t. For negative
t, it suffices to consider the adjoint operator.

We come now to the second estimate (29). Let b± ∈ S0
±,1(ε0, d0, R0) for ε0, d0, R0 > 0. We

proceed as before. We have :

e−ih−1TP AD(h)θ
(
PAD(h)

)
b±(x, hD) = bT,±(x, hD)e−ih−1TP AD(h)+e−ih−1TP AD(h)VN,±+VN,T,±

where bT,± is supported in the support of b±◦Φ−T . For all R1 > 0, we deduce from (16)
that, for some d > 0, bT,± ∈ S0

±,1(ε0/2, d, R1), for all ±t > T , provided T is large enough.
Choosing R1 large enough and using (20) in Proposition 3.9, we obtain (29).

To prove (30), we follow the same lines. We still have :

e−ih−1TP AD(h)θ
(
PAD(h)

)
b2,±(x, hD) = bT,2,±(x, hD)e−ih−1TP AD(h)+e−ih−1TP AD(h)VN,±+VN,T,±

with the same properties as before. For all R1 > 0 and 0 < ε′1 < ε1, we have, thanks to
(16), bT,2,± ∈ S0

±,1(ε
′
1, d, R1) for ±t > T and for T large enough, for some d > 0. Choosing

ε in order to have ε0 > ε and taking R1 large enough, we obtain, from the first estimate
(19) in Proposition 3.9, the third and last estimate (30). 2

4 Classical limit for the operator SAD.

The goal of this section is to obtain Theorems 4.2 and 4.3 dealing with SAD, corresponding
to Theorems 5.3 and 5.4 in [KMW1] for cluster wave operators. Then we outline how
Theorem 1.2 derives from Theorem 4.2. To this end, recall that the potentials satisfy the
condition (Dρ) for some ρ > 1. Using the results of Section 3, we can describe the action
of SAD on quantum observables and coherent states. The result is expressed in terms of
the classical scattering operator Scl

a which we define below.

As in Section 2, the Hamiltonian flow associated to the Hamilton function |ξ|2 + λ(x; 0)
is denoted by Φt and we set :

∀(x, ξ) ∈ IRn
x × IRn

ξ \ {0}, Φt(x, ξ) =
(
q(t;x, ξ), p(t;x, ξ)

)
.

We consider now the following subset of the phase space :

Ψnc ≡
{
(x, ξ) ∈ IR2n; lim

t→+∞
‖Φt(x, ξ)‖ = ∞ and lim

t→−∞
‖Φt(x, ξ)‖ = ∞

}
.

In fact, Ψnc is the set of phase space points which are non-trapping for the Hamilton
function |ξ|2 +λ(x; 0), according to Definition 2.2. Since the eigenvalues λ(x; 0) are simple
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for all x, the function IRn 3 x 7→ λ(x; 0) have the properties of the function IRn 3
x 7→ Π(x; 0) (cf. Proposition 2.1). Thus, the classical wave operators (18) exist and are
complete (cf. [RS3]). In particular, we have the following two inclusions :

Ψnc ⊂ Ran Ωcl
±

so that we can define the scattering operator

Scl
a : (Ωcl

a,−)−1(Ψnc) −→ (Ωcl
a,+)−1(Ψnc) (1)

by
Scl

a = (Ωcl
a,+)−1Ωcl

a,−.

As mentioned in the introduction, we have the following approximation :

Theorem 4.1 ([KMW1]) Under the assumption (Dρ), ρ > 1, for the potentials and the
assumption (HS(h)) for the simple eigenvalue E0 (cf. Definition 1.1), let χ ∈ C∞

0 (]E0; +∞[; IR)
be non-trapping for the Hamilton function |ξ|2 +λ(x; 0) (cf. Definition 2.2) and such that
its support verifies :

sup(suppχ) < inf
x∈IRn

inf
{
σ(Pe(x; 0)) \ {λ(x; 0)}

}
(these are the conditions of Theorem 1.2). Then we have :∥∥∥(Ωα

±(h)− ΩAD
± (h)

)
χ(Pa(h))

∥∥∥ = O(h).

Theorem 1.2 then follows directly from the following main result of Section 4 :

Theorem 4.2 Assume the assumption (Dρ) with ρ > 1 for the potentials and the assump-
tion (HS(h)) for the simple eigenvalue E0 (cf. Definition 1.1). Let χ ∈ C∞

0 (]E0; +∞[; IR)
be non-trapping for the Hamilton function |ξ|2 +λ(x; 0) (cf. Definition 2.2). Let (x0, ξ0) ∈
IR2n such that χ(|ξ0|2 + E0) = 1. For all bounded symbols c ∈ S(H), we set :

SAD
c (h) = Uh(x0, ξ0)

∗(SAD(h))∗χ
(
Pa(h)

)
c(x, hD) χ

(
Pa(h)

)
SAD(h)Uh(x0, ξ0).

The operators Uh(x0, ξ0) are given by (13) and the h-pseudodifferential operator c(x, hD)
is defined by (12).

In L2(IRn
x;L2(IRnN0

y )), the following strong limit exists and is given by

s− lim
h→0

SAD
c (h) = Π0(0) (c◦Scl

a )(x0, ξ0) Π0(0).

To obtain Theorem 1.2, we just have to pick a function χ̃ ∈ C∞
0 (]E0; +∞[; IR), satisfying

χ = χχ̃ and non-trapping for |ξ|2 + λ(x; 0), to use the interwining property of the wave
operators Ωα

±(h) and ΩAD
± (h), and to apply Theorem 4.1 and Theorem 4.2.

We shall derive Theorem 4.2 from the following Theorem :
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Theorem 4.3 Under the assumptions of Theorem 4.2, for all symbols

b1, b2 ∈
(
S0

+,1(IR) ∩ S0
−,1(IR)

)
∪ C∞

0 (IR2n; IR)

and for all bounded symbols c ∈ S(H), we set :

CAD(h) = b1(x, hD)(SAD(h))∗χ
(
Pa(h)

)
c(x, hD) χ

(
Pa(h)

)
SAD(h)b2(x, hD).

For T large enough and for all t > T , the operator CAD(h) is an admissible h-pseudodifferential
operator with principal symbol given by

CAD
0 (x, ξ) = χ2(|ξ|2 + E0) b1(x, ξ)b2(x, ξ)Gt(x, ξ) c

(
Scl

a (x, ξ)
)
Gt(x, ξ)

∗,

where Scl
a (x, ξ) = (Ωcl

a,+)−1◦Ωcl
a,−(x, ξ) is the classical scattering operator. Setting (q−, p−) =

Ωcl
a,−(x, ξ) and (y, η) = Scl

a (x, ξ), the symbols Gt ∈ S0
1(H), valued in H = L(L2(IRnN0

y )),
are given by

Gt(x, ξ) = Π0(0)
(
G−◦κ−1

2,−◦Φ−t(q−, p−)
)∗

Π
(
x−(x− 2tξ, ξ); 0

)
Π
(
q(−t; q−, p−); 0

)
Π
(
q(t; q−, p−); 0

)
G+◦κ−1

1,+◦Φt
0(y, η) Π0(0).

See Section 2 for the definition of the operators G±, κ1,±, et κ2,±.

Remark 4.4 In contrast to Proposition 2.4 in [KMW1], we need here a non-trapping
condition. This is not a surprise according to the definition of the classical scattering
operator Scl

a .

Notice that the proof of Theorem 4.3 would be easier if we require that the observable c be-
longs to S0

+,1(H)∪C∞
0 (IR2n;H). Indeed, using Proposition 2.4, we may directly replace, in

this case, each operator ΩAD
+ (h) by W+(t;h) in CAD(h), up to an error of order O(h∞). In

the general case, the same replacement is allowed by the propagation estimates established
in Section 3.

Proof (of Theorem 4.2 admitting Theorem 4.3) : We follow the arguments in
[KMW1]. Let χ̃ ∈ C∞

0 (]E0; +∞[; IR) satisfying χ = χχ̃. By the interwining property of
the wave operators ΩAD

± (h), we may write

SAD
c (h) = Uh(x0, ξ0)

∗χ̃
(
Pa(h)

)
(SAD(h))∗χ

(
Pa(h)

)
c(x, hD) χ

(
Pa(h)

)
SAD(h)χ̃

(
Pa(h)

)
Uh(x0, ξ0).

It suffices to study the limit on the dense subset C∞
0 (IRn

x;L2(IRnN0
y )). Let χ1 ∈ C∞

0 (IRn; IR)

be such that χ1 = 1 on the unit ball. We define χh(x) = χ1(h
1/2x). For f ∈ C∞

0 (IRn
x;L2(IRnN0

y )),
we have (1 − χh)f = 0, for h small enough. Since the functions SAD

c (h)f are uniformly
bounded w.r.t. h and since, for g ∈ L2(IRn

x;L2(IRnN0
y )),

lim
h→0

(1− χh)g = 0,
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it follows that
lim
h→0

(
χhSAD

c (h)χhf − SAD
c (h)f

)
= 0.

As already remarked in (14), we have :

Uh(x0, ξ0)χhUh(x0, ξ0)
∗ = χ1(· − x0).

Since the symbol (x, ξ) 7→ χ1(x − x0)χ̃(|ξ|2 + E0(h)) belongs to C∞
0 (IR2n; IR), we may

apply Theorem 4.3 to the following operator :

χ1(· − x0)χ̃
(
Pa(h)

)
(SAD(h))∗χ

(
Pa(h)

)
c(x, hD) χ

(
Pa(h)

)
SAD(h)χ̃

(
Pa(h)

)
χ1(· − x0).

Then it is an admissible h-pseudodifferential operator with principal symbol given by

sc(x, ξ) = χ2(|ξ|2 + E0) χ
2
1(x− x0) Gt(x, ξ)

∗ c(Scl
a (x, ξ)) Gt(x, ξ),

for t ≥ T and for T large enough, since χ = χχ̃. Furthermore, we have :

lim
h→0

(
χhSAD

c (h)χhf − Uh(x0, ξ0)
∗sc(x, hD)Uh(x0, ξ0)f

)
= 0.

But we also have :

Uh(x0, ξ0)
∗sc(x, hD)Uh(x0, ξ0) = sc(x0 + h1/2x, ξ0 + h1/2D).

This leads then to :

lim
h→0

SAD
c (h)f = χ2(|ξ0|2 + E0) Gt(x0, ξ0)

∗ c(Scl
a (x0, ξ0)) Gt(x0, ξ0)f.

Since SAD
c (h)f is t-independent, we can take the limit as t→ +∞. Recall that χ(|ξ0|2 +

E0) = 1. Because of the non-trapping condition and the behaviour of x−(x, ξ) when |x| is
getting large (see (20)), one can see that the phase space points q(±t; q−, p−), x−(x−2tξ, ξ)
and q(t; y, η) all go to infinity. The behaviour of the function x 7→ Π(x; 0) at infinity (cf.
Proposition 2.1) and those of G±(x, ξ) for large |x| (cf. (27)) yield the claim. 2

Proof (Theorem 4.3) : We consider a function χ̃ ∈ C∞
0 (]E0; +∞[; IR) such that χ = χχ̃.

Due to the interwining property of wave operators, we can write :

CAD(h) = b1(x, hD)χ̃
(
Pa(h)

)
(ΩAD

− (h))∗χ
(
PAD(h)

)
ΩAD

+ (h)χ̃
(
Pa(h)

)
c(x, hD)

χ̃
(
Pa(h)

)
(ΩAD

+ (h))∗χ
(
PAD(h)

)
ΩAD
− (h)χ̃

(
Pa(h)

)
b2(x, hD).

Let ε, d, R > 0. We shall choose them precisely later. We first impose to R to be large
enough such that the operators κ1,± and κ2,± are global diffeomorphisms (cf. Section 2).
Since we have b1 ∈ S0

−,1(IR), we can find some ε > 0 small enough such that we have the

decomposition b1 = b̃1 + ψ with b̃1 ∈ S0
−,1(4ε, 4d, 4R; IR) and such that ψ is supported in{

(x, ξ) ∈ IR2n; |x| ≤ 4R + 1, |ξ| ≤ 4d+ 1
}
.
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Applying successively Proposition 2.4 to b̃1 and to ψ, we can find some T > 0 large enough
such that, for all t ≥ T ,

CAD(h) = b1(x, hD)χ̃
(
Pa(h)

)
(W−(−t;h))∗χ

(
PAD(h)

)
ΩAD

+ (h)χ̃
(
Pa(h)

)
c(x, hD)

χ̃
(
Pa(h)

)
(ΩAD

+ (h))∗χ
(
PAD(h)

)
W−(−t;h)χ̃

(
Pa(h)

)
b2(x, hD) + O(h∞)

where the operators W±(t;h) are defined in Proposition 2.4. Thanks to the assumption
on the symbols b1 and b2, we shall show that we may replace each ΩAD

+ by W+(t;h) in the
previous expression.

We choose d small enough in order to have

E0 + 2d < inf suppχ̃.

Due to Proposition 2.4, we can write, for all functions f ∈ L2(IRn(N+1)
x,y ),

χ
(
PAD(h)

)(
ΩAD

+ (h)−W+(t;h)
)
χ̃
(
Pa(h)

)
f (2)

= ih−1
∫ +∞

t
eih−1sP AD(h)χ

(
PAD(h)

)
J+

(
r+(h)

)
e−ih−1sPa(h)Π0(h)χ̃

(
Pa(h)

)
f ds

and(
W−(−t;h)

)∗
= J−

(
a−(h)

)∗
+ ih−1

∫ t

0
Π0(h)e

−ih−1sPa(h)J−
(
r−(h)

)∗
eih−1sP AD(h) ds. (3)

First, we prove that there exists T > 0 such that, for all m > 0 and for all t+ s > T ,∥∥∥J+

(
r+(h)

)∗
eih−1(t+s)P AD(h)χ

(
PAD(h)

)
J−
(
r−(h)

)
〈x〉m

∥∥∥ = O(h∞〈t+ s〉−∞). (4)

We split the symbols r+(h) and r−(h) according to (10). Thanks to (28) and Corollary 3.8,
the contributions of r+,1(h) and r−,1(h) in (4) are O(h∞〈t + s〉−∞). Because of (29), the
contributions in (4) of (r+,3(h), r−,2(h)) and of (r+,2(h), r−,3(h)) are O(h∞〈t + s〉−∞). To
check those of (r+,2(h), r−,2(h)) and (r+,3(h), r−,3(h)), we use (28) and (30) respectively
and we obtain the same estimate. We have proved (4).

Now, we use (6) for k = 0 if b1 ∈ S0
+,1(IR) and the fact that (14) is also true for the free

operator Pa(h)Π0(h) if b1 ∈ C∞
0 (IR2n; IR). Thanks to (4), this yields

∥∥∥∫ t

0
b1(x, hD)χ̃

(
Pa(h)

)
Π0(h)e

−ih−1sPa(h)J−
(
r−(h)

)∗
eih−1(t+s)P AD(h)χ

(
PAD(h)

)
J+

(
r+(h)

)
ds
∥∥∥

= O(h∞〈t〉−∞),

for t > T (as in the proof of Proposition 3.6). Due to (2) and (3), this means that

b1(x, hD)χ̃
(
Pa(h)

)(
W−(−t;h)

)∗
χ
(
PAD(h)

)(
ΩAD

+ (h)−W+(t;h)
)
χ̃
(
Pa(h)

)
(5)

= b1(x, hD)χ̃
(
Pa(h)

)
Π0(h)J−

(
a−(h)

)∗
χ
(
PAD(h)

)(
ΩAD

+ (h)−W+(t;h)
)
χ̃
(
Pa(h)

)
+O(h∞).
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According to Proposition 3.4, one can write

b1(x, hD)χ̃
(
Pa(h)

)
Π0(h)J−

(
a−(h)

)∗
= J−

(
ã−(h)

)∗
b̃(x, hD) + J−

(
r̃−(h)

)
where 〈x〉NJ±(r̃(N ;h)) is O(hN), for all N , the symbols ã−(h) are uniformly bounded in
S0(H), and :

b̃ ∈ S0
+,1(IR) if b1 ∈ S0

+,1(IR),

b̃ ∈ C∞
0 (IR2n; IR) if b1 ∈ C∞

0 (IR2n; IR).

The contribution in (5) is seen to be O(h∞). Next, we prove that, for T > 0 large enough,∥∥∥b̃(x, hD)eih−1tP AD(h)J+

(
r+(h)

)∥∥∥ = O(h∞〈t〉−∞), (6)

for t > T .

We split r+(h) again, according to (10). The contribution in (6) of r+,1(h) is O(h∞〈t〉−∞)
because of (28) and of (15) if b1 ∈ S0

+,1(IR), of (14) if b1 ∈ C∞
0 (IR2n; IR). To compute

the contribution of r+,2(h), we use (29) if b1 ∈ S0
+,1(IR) and (28) if b1 ∈ C∞

0 (IR2n; IR).
For r+,3(h), we choose ε small enough and use (30) if b1 ∈ S0

+,1(IR) and (29) if b1 ∈
C∞

0 (IR2n; IR). In each case, we obtain the same estimation for t large enough. This yields
(6).

We obtain that the right side in (5) is in fact O(h∞). Thus we can replace in CAD, up to
an error of O(h∞), the first operator ΩAD

+ by W+(t;h), for t > T . The same arguments
show that we can also the second operator ΩAD

+ by W+(t;h), for t > T . We then have, for
b1, b2 ∈ [S0

+,1(IR) ∩ S0
−,1(IR)] ∪ C∞

0 (IR2n; IR),

CAD(h) = b1(x, hD)χ̃
(
Pa(h)

)
W−(−t;h)∗χ

(
PAD(h)

)
W+(t;h)χ̃

(
Pa(h)

)
c(x, hD)

χ̃
(
Pa(h)

)
W+(t;h)∗χ

(
PAD(h)

)
W−(−t;h)χ̃

(
Pa(h)

)
b2(x, hD) + O(h∞)

and the first term may be written as follow :

b1(x, hD)χ̃
(
Pa(h)

)
Π0(h)e

−ih−1tPa(h)J−
(
a−(h)

)∗
e2ih−1tP AD(h)χ

(
PAD(h)

)
J+

(
a+(h)

)
e−ih−1tPa(h)Π0(h)χ̃

(
Pa(h)

)
c(x, hD) χ̃

(
Pa(h)

)
Π0(h)e

ih−1tPa(h)

J+

(
a+(h)

)∗
χ
(
PAD(h)

)
e−2ih−1tP AD(h)J−

(
a−(h)

)
eih−1tPa(h)Π0(h)χ̃

(
Pa(h)

)
b2(x, hD).

Using now Theorem 3.2 and Proposition 3.4, we are sure that we are dealing with an
admissible h-pseudodifferential operator. To finish the proof of Theorem 4.3, we just have
to calculate its principal symbol.

First we remark that the operator

Π0(h)χ̃
(
Pa(h)

)
c(x, hD) χ̃

(
Pa(h)

)
Π0(h)
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is an h-pseudodifferential operator with principal symbol Π0(0)cχ,0(x, ξ)Π0(0) with cχ̃,0(x, ξ) =
χ̃2(|ξ|2 + E0)c(x, ξ), due to the functional calculus of Helffer and Robert (cf. [HR]). Ac-
cording to Egorov’s theorem (cf. Remark 3.3), the operator

Π0(h)e
−ih−1tPa(h)χ̃

(
Pa(h)

)
c(x, hD) χ̃

(
Pa(h)

)
eih−1tPa(h)Π0(h)

is an h-pseudodifferential operator c1(x, hD) with principal symbol c1,0(x, ξ) = Π0(0)(cχ̃,0◦
Φ−t

0 )(x, ξ)Π0(0). Furthermore, Proposition 3.4 gives

J+(a+)c1(x, hD) = J+(c2)

where the principal symbol of c2 is given by

c2,0(x, ξ) = a0,+(x, ξ)c1,0

(
∇ξφ+(x, ξ), ξ

)
.

The operator J+(c2)J+(a+)∗ is an h-pseudodifferential operator c3(x, hD) with principal
symbol

c3,0(x, ξ) = c2,0

(
x, ξ+(x, ξ)

)
a0,+

(
x, ξ+(x, ξ)

)∗∣∣∣det
(∂ξ+
∂ξ

(x, ξ)
)∣∣∣

= a0,+

(
x, ξ+(x, ξ)

)
Π0(0) cχ̃,0◦Φ−t

0

(
∇ξφ+

(
x, ξ+(x, ξ)

)
, ξ+(x, ξ)

)
Π0(0)

∣∣∣det
(∂ξ+
∂ξ

(x, ξ)
)∣∣∣a0,+

(
x, ξ+(x, ξ)

)∗
.

For (x, ξ) ∈ Ψnc such that (x, ξ+(x, ξ)) ∈ Ψ+(2ε, 2d, 2R), we have :

c3,0(x, ξ) = Π(x; 0)G+

(
x, ξ+(x, ξ)

)
Π0(0) cχ̃,0◦Φ−t

0 ◦(Ωcl
a,+)−1(x, ξ)

Π0(0)G+

(
x, ξ+(x, ξ)

)∗
Π(x; 0) (7)

thanks to (25) and (26). Because of the properties of the phase φ+ (cf. (22)), the previous
relation (7) is, in fact, valid for (x, ξ) ∈ Ψ+(3ε, 3d, 3R) ∩Ψnc. For j ∈ {1, 2}, we set :

Gj,±(x, ξ) = G±◦κ−1
j,±(x, ξ). (8)

Then we have, in Ψ+(3ε, 3d, 3R) ∩Ψnc,

c3,0(x, ξ) = Π(x; 0) G1,+◦(Ωcl
a,+)−1(x, ξ) Π0(0) cχ̃,0◦Φ−t

0 ◦(Ωcl
a,+)−1(x, ξ)

Π0(0)
(
G1,+◦(Ωcl

a,+)−1(x, ξ)
)∗

Π(x; 0)

due to (25). According to Theorem 3.2 and the functional calculus of Helffer and Robert
(cf. [HR]), the operator

χ
(
PAD(h)

)
Π(h)e2ih−1tP AD(h) c3(x, hD) e−2ih−1tP AD(h)Π(h)χ

(
PAD(h)

)
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is an h-pseudodifferential operator c4(x, hD) with principal symbol

c4,0(x, ξ) = χ2(|ξ|2 + λ(x; 0)) Π(x; 0)Π
(
q(2t;x, ξ); 0

)
G1,+ ◦ (Ωcl

a,+)−1 ◦ Φ2t(x, ξ) Π0(0)

cχ̃,0 ◦ Φ−t
0 ◦ (Ωcl

a,+)−1 ◦ Φ2t(x, ξ)

Π0(0)
(
G1,+ ◦ (Ωcl

a,+)−1 ◦ Φ2t(x, ξ)
)∗

Π
(
q(2t;x, ξ); 0

)
Π(x; 0),

for (x, ξ) ∈ Ψnc such that Φ2t(x, ξ) ∈ Ψ+(3ε, 3d, 3R). We note that the interwining prop-
erty of wave operators implies that

cχ̃,0 ◦ Φ−t
0 ◦ (Ωcl

a,+)−1 ◦ Φ2t = cχ̃,0 ◦ (Ωcl
a,+)−1 ◦ Φt

and
G1,+ ◦ (Ωcl

a,+)−1 ◦ Φ2t(x, ξ) = G1,+ ◦ Φ2t
0 ◦ (Ωcl

a,+)−1(x, ξ).

The h-pseudodifferential operator

c5(x, hD) = J−(a−)∗ c4(x, hD) J−(a−)

has, thanks to (24), the following principal symbol :

c5,0(x, ξ) = a0,−
(
x−(x, ξ), ξ

)∗
c4,0◦Ωcl

a,−(x, ξ) a0,−
(
x−(x, ξ), ξ

)∣∣∣det
(∂x−
∂x

(x, ξ)
)∣∣∣

for (x, ξ) ∈ Ψ−(3ε, 3d, 3R) and we have, according to (26),

c5,0(x, ξ) = G−
(
x−(x, ξ), ξ

)∗
Π
(
x−(x, ξ); 0

)
c4,0◦Ωcl

a,−(x, ξ) Π
(
x−(x, ξ); 0

)
G−

(
x−(x, ξ), ξ

)
.

If (x, ξ) ∈ Ψ−(4ε, 4d, 4R) and Φ2t ◦ Ωcl
a,−(x, ξ) ∈ Ψ+(3ε, 3d, 3R),

c5,0(x, ξ) = χ2◦p◦Ωcl
a,−(x, ξ) G̃(x, ξ) cχ̃,0◦(Ωcl

a,+)−1◦Φt◦Ωcl
a,−(x, ξ) G̃(x, ξ)∗

with p(x, ξ) = |ξ|2 + λ(x; 0) and

G̃(x, ξ) =
(
G2,−◦Ωcl

a,−(x, ξ)
)∗

Π
(
x−(x, ξ); 0

)
Π(q−; 0)Π

(
q(2t; q−, p−); 0

)
G1,+◦Φ2t

0 ◦Scl
a (x, ξ) Π0(0),

thanks to (8) and (24). But

cχ̃,0◦(Ωcl
a,+)−1◦Φt◦Ωcl

a,− = cχ̃,0◦Scl
a ◦Φt

0,

due to the interwining property of the classical wave operators. Thanks to Egorov’s the-
orem (cf. Remark 3.3) again, the operator

Π0(h)e
−ih−1tPa(h) c5(x, hD) eih−1tPa(h)Π0(h)

is an h-pseudodifferential operator c6(x, hD) with principal symbol c6,0. Choosing ε, d > 0
small enough, we can ensure that, for t large enough,

Φ−t
0

(
supp b1,∓ ∩ supp b2,±

)
⊂ Ψ−(4ε, 4d, 4R), (9)

Φ2t ◦ Ωcl
a,−(x, ξ) ◦ Φ−t

0

(
supp b1,∓ ∩ supp b2,±

)
⊂ Ψ+(3ε, 3d, 3R). (10)
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Indeed, we deduce (9) from (16) and (17), since b1, b2 ∈ S0
−,1(IR) ∪ C∞

0 (IR2n; IR). But we
also have b1, b2 ∈ S0

+,1(IR) ∪ C∞
0 (IR2n; IR). Using (21), (22), and (23), we obtain, for t

large enough,

Φt ◦ Ωcl
a,−(x, ξ)

(
supp b1,∓ ∩ supp b2,±

)
⊂ Ψ+(3ε, 3d, 3R),

which yields (10).

Putting all together, we derive that, on the set supp b1,∓ ∩ supp b2,±, the symbol c6,0 is
given by

c6,0(x, ξ) = χ2◦p◦Ωcl
a,−◦Φ−t

0 (x, ξ) Π0(0) G̃◦Φ−t
0 (x, ξ)cχ̃,0◦Scl

a (x, ξ)
(
G̃◦Φ−t

0 (x, ξ)
)∗

Π0(0)

= Gt(x, ξ) cχ̃,0◦Scl
a (x, ξ) Gt(x, ξ)

∗

with

Gt(x, ξ) = Π0(0)
(
G2,− ◦ Φ−t ◦ Ωcl

a,−(x, ξ)
)∗

Π
(
x−(x− 2tξ, ξ); 0

)
Π
(
q(−t; q−, p−); 0

)
Π
(
q(t; q−, p−); 0

)
G1,+ ◦ Φt

0 ◦ Scl
a (x, ξ) Π0(0),

because of the interwining property of the classical wave operators. To arrive at the claim,
it suffices to note that p◦Ωcl

a,−(x, ξ) = |ξ|2 + E0, that we can write :

cχ̃,0◦Scl
a (x, ξ) = χ̃2(|ξ|2 + E0) c ◦ Scl

a (x, ξ),

due to conservation of energy, and that χ = χχ̃. 2

Appendix

We have used some properties of the classical flow associated to a Hamilton function with
short-range potential. We give here a proof of these properties.

Proof (of Proposition 2.3) : We only give the arguments for the indice +. One can
recover the other case in a similar way. We denote the potential λ(x; 0) simply by V (x).

First, we show (15). We observe that, if we choose C0 > 1 such that 2C−2
0 < ε, then we

have, for all t > 0,
|x+ 2tξ| ≥ C−1

0

(
|x|+ 2t|ξ|

)
(1)

for all (x, ξ) ∈ Ψ+(ε, d, R). Let C = 4C0. Using the integral formula

q(t;x, ξ) = x+ 2tξ − 2
∫ t

0

∫ s

0
∇V

(
q(u;x, ξ)

)
duds, (2)

we see that there exists some t0 > 0, such that, for t ∈ [0; t0], we have :∣∣∣q(t;x, ξ)∣∣∣ ≥ C−1
(
|x|+ 2t|ξ|

)
(3)
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for all (x, ξ) ∈ Ψ+(ε, d, 1). Thanks to the short-range assumption (11) and to (2), we can
choose some R0 > 0 large enough such that

∣∣∣q(t0;x, ξ)∣∣∣ ≥ 1

2

(
|x+ 2t0ξ|

)
≥ C−1

0

2

(
|x|+ 2t0|ξ|

)
≥ 2C−1

(
|x|+ 2t0|ξ|

)
,

for all (x, ξ) ∈ Ψ+(ε, d, R) and all R > R0. Because of this improvement, we see that, in
fact, (3) holds for all t > 0, for all (x, ξ) ∈ Ψ+(ε, d, R), and all R > R0. Furthermore, we
clearly have, for (x, ξ) ∈ Ψ+(ε, d, R) and t > 0,∣∣∣q(t;x, ξ)∣∣∣ ≥ R

C
.

Using now the integral formula

p(t;x, ξ) = ξ −
∫ t

0
∇V

(
q(s;x, ξ)

)
ds, (4)

we can show that, for R0 is large enough,∣∣∣p(t;x, ξ)∣∣∣2 ≥ d

2
,

for all t > 0, for all (x, ξ) ∈ Ψ+(ε, d, R), and all R > R0. Now, we note that the angle
between x+ 2tξ and ξ decrease i.e.

x+ 2tξ

|x+ 2tξ|
· ξ
|ξ|

≥ x · ξ
|x| |ξ|

, (5)

for t > 0 and (x, ξ) ∈
(
IRn \{0}

)2
. For R0 large enough, we deduce from (2) (respectively

(4)) that q(t;x, ξ) (respectively p(t;x, ξ)) is approximated by x + 2tξ (respectively ξ),
uniformly on Ψ+(ε, d, R) and for R > R0. Then (5) yields

q(t;x, ξ) · p(t;x, ξ) ≥ (−1 + ε/2)
∣∣∣q(t;x, ξ)∣∣∣ ∣∣∣p(t;x, ξ)∣∣∣,

for all t > 0, for all (x, ξ) ∈ Ψ+(ε, d, R), and all R > R0. We have proved (15).

We come to prove (16). Since V is a bounded function, |p(t;x, ξ)| must remain bounded,
uniformly w.r.t (x, ξ) ∈ p−1(I) and t. Thus the non-trapping assumption implies that the
position q(t;x, ξ) must go to infinity. But we need some uniformity. Since the set

P (R0) ≡
{
(y, η) ∈ IR2n; |y| ≤ R0

}
∩ p−1(I)

is compact, we have the following property : for all R0 > 0, there exist d, t0 > 0, such
that, for all t ≥ t0,

∀(x, ξ) ∈ P (R0),
∣∣∣q(t;x, ξ)∣∣∣ ≥ R0 and

∣∣∣p(t;x, ξ)∣∣∣2 ≥ d. (6)

Choosing R0 large enough, (15) yields (16) on the set{
(y, η) ∈ IR2n; |y| ≥ R0

}
∩Ψ+(ε, d, R).
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Due to (6), we can find C > 1 and t0 > 0, such that, for t > t0, (3) holds on P (R0). Thus
we can follow the proof of (15) to derive (16) on P (R0).

But the angle between x+ 2tξ and ξ may be as small as one wants, uniformly on P (R0),
as soon as t is large enough. This is precisely what (17) means. We prove it now.

Due to (6), we can find d,R′
0 > 0 and t0 > 0, such that

Φt0
(
P (R0)

)
⊂ P (R′

0) ∩
{
(y, η) ∈ IR2n; |η|2 ≥ d

}
≡ A.

Using (2) and (4) again, we can show that, for all ε′ > 0, there is T > 0 such that,

q̂(t;x, ξ) · p̂(t;x, ξ) ≥
(
x+ 2tξ

|x+ 2tξ|
· ξ̂
)
(1− ε′)

(with x̂ = x/|x|) holds on A. But since x remain bounded in A, we have, for t large
enough,

C−12t|ξ| ≤ |x+ 2tξ| ≤ 2t|ξ|(1− ε′).

Therefore,
(x+ 2tξ) · ξ
|x+ 2tξ| |ξ|

≥ C
x · ξ
t|ξ|

+
1

1− ε′

where the first term on the right hand side tend to 0, uniformly on A. For T large enough,
we then obtain, for all t > T ,

q̂(t;x, ξ) · p̂(t;x, ξ) ≥ 1− ε = −1 + 2− ε. 2
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admissibles. J. Funct. Anal. 53 (1983), 246-268.
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