
Existence and semiclassical analysis of the total scattering

cross-section for atom-ion collisions

Thierry Jecko
Universite de Rennes I

Departement de Mathematiques
F-35042 Rennes Cedex, FRANCE

e-mail: jecko@maths.univ-rennes1.fr

Markus Klein
Universität Potsdam

Institut für Mathematik
D-14469 Potsdam, GERMANY

e-mail: mklein@math.uni-potsdam.de

Xue Ping Wang
Universite de Nantes

Departement de Mathematiques
F-44072 Nantes Cedex, FRANCE

e-mail: Xue-Ping.Wang@math.univ-nantes.fr

03-04-2000

Abstract

We consider the total scattering cross-section for atom-ion collisions in a channel given by a simple
eigenvalue of the internal Hamiltonian describing the neutral cluster, i.e. the atom. Under this assump-
tion we show that the effective atom-ion interaction decays sufficiently fast to guarantee finiteness of
the total scattering cross-section. In a more refined analysis, under a condition of rotational invariance,
we show that the effective interaction is precisely of order |x|−4 in the distance between the 2 clusters.
We then extract the leading term of the scattering cross-section in the limit where the semiclassical
parameter, i.e. the ratio of electronic to nuclear mass, tends to zero. For this analysis we impose a
non-trapping condition on the relevant electronic eigenvalue describing the scattering channel and use
earlier work on the Born-Oppenheimer approximation for potentials with singularities of Coulomb type,
in particular the associated semiclassical resolvent estimates. They have to be combined with results
and methods to analyze the semiclassical limit in potential scattering. We find that in our case the
Born-Oppenheimer approximation gives the leading contribution to the scattering cross-section and we
estimate the remainder.

I Introduction

The plan of this paper is as follows. In Section II we introduce the basic notation which will be used
throughout the paper and we recall a few basic facts from n-body scattering theory. We introduce the
hypotheses which are relevant for this paper and we state our main results, i.e. Theorem II.1 on the
existence of the total scattering cross-section and Theorem II.2, which gives the semiclassical asymptotics
of this cross-section. In Section III we prove Theorem II.1. The essential point are certain weighted L2

estimates which show that upon localization in energy in the relevant spectral range the effective interaction
decays faster than O(|x|−2), which is the obvious norm estimate on an atom-ion interaction. In Section IV we
prove Theorem II.2. We first establish the relevant semiclassical estimates on potentials and resolvents, using
methods from [KMW2]. Then we prove an upper bound on the total scattering cross-section, in the spirit
of [RT] and [RW]. Finally we derive the leading term of the cross-section, given in terms of an appropriate
effective potential which only depends on the nuclear coordinates. In Appendix A we collect for the sake
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of the reader the basic geometrical formalism due to Agmon for n-body scattering theory which gives nice
intrinsic formulae. We apply these formulae in Appendix B to obtain all relevant expressions in the special
coordinates chosen in this paper. In particular, we thus obtain the correct dependence of the cross-section on
the semiclassical parameter. In Appendix C we include the relevant expansions for the Coulomb interaction
in atom-ion scattering which are used throughout the paper.

II Notation, assumptions and main results

The Hamiltonian of a diatomic molecule with N electrons can be written in the form

Pphys =
2∑
k=1

1
2mk

(
−∆xk

)
+

N+2∑
j=3

1
2
(
−∆xj

)
+

Z1Z2

|x1 − x2|
(II.1)

+
2∑
k=1

N+2∑
j=3

ejZk
|xj − xk|

+
∑

2≤l<j≤N+2

elej
|xl − xj |

where xk ∈ R3, k = 1, 2, denote the position of the two nuclei with mass mk and charge Zk > 0 and xj ∈ R3,
j = 3, . . . , N + 2, denote the position of N electrons with mass 1 and charge ej ∈ R (in the physical case
charges are equal and negative). Planck’s constant is taken to be 1 in this formula.
We are interested in scattering processes, where after interaction the system becomes the union of two
clusters, which move asymptotically freely and each of which contains a nucleus. Let a = (a1, a2) be a
two-cluster decomposition of {1, . . . , N + 2}, i.e. a partition (a1, a2) of the particle labels {1, . . . , N + 2},
where j ∈ aj , for j = 1, 2. Adapted to this cluster decomposition, we choose so called clustered atomic
coordinates (x, y) ∈ R3 × R3N :

h =
(

1
2M1

+
1

2M2

)1/2

, Mk = mk + |a′k| , a′k = ak \ {k} , k = 1 , 2 , (II.2)

Rk =
1
Mk

(
mkxk +

∑
j∈a′k

xj

)
, k = 1 , 2 ,

x = R1 −R2 , (II.3)
yj = xj − xk , j ∈ a′k , k = 1 , 2 , (II.4)

l(y) =
1
M1

∑
j∈a′1

yj −
1
M2

∑
j∈a′2

yj . (II.5)

Notice that Rk is the center of mass of the cluster ak, for k = 1, 2, and that x is the relative position of these
centers of mass. These coordinates are well adapted to describe two-cluster scattering of diatomic molecules
(see [KMW1], [KMW2]). After removing the molecular center of mass motion, the Hamiltonian Pphys may
be written in this system of coordinates as

P = −h2∆x + Pe(x;h), Pe(x;h) = Pa(h) + Ia(x;h), (II.6)

where the sub-Hamiltonian Pa(h) is given by

Pa(h) =
2∑
k=1

{ ∑
j∈a′k

(
−1

2
∆yj +

Zkej
|yj |

)
− 1

2mk

( ∑
j∈a′k

∂yj

)2

+
∑

l,j∈a′
k

l<j

elej
|yl − yj |

}
,

= Pa1(h) + Pa2(h) , (II.7)

and the inter-cluster interaction Ia(x;h) by

Ia(x;h) =
Z1Z2

|x− l(y)|
+

∑
k∈a′1
j∈a′2

ekej
|yk − yj + x− l(y)|

+
∑
j∈a′1

Z2ej
|yj + x− l(y)|

+
∑
j∈a′2

Z1ej
|x− l(y)− yj |

. (II.8)
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Later on we shall in addition need the Hamiltonian describing the free motion of the two clusters. It is
defined by eliminating the inter-cluster interaction and we denote it by

Pa(h) = −h2∆x + Pa(h). (II.9)

Let us now define the total scattering cross-sections. To this end, we shall at first set h = 1, for reasons of
convenience only. The exact dependence on the semiclassical parameter h will be handled in an intrinsic
matter in Appendix A.

For an arbitrary cluster decomposition c = (c1, . . . , ck) of {1, . . . , N + 2}, i.e. c1 ∪ · · · ∪ ck = {1, . . . , N + 2}
and cj ∩ ck = ∅, for j 6= k, we can also choose adapted coordinates (xc, yc). We call Pc the sub-Hamiltonian,
xc ∈ R3(k−1) the inter-cluster coordinates, yc the intra-cluster coordinates, and Ic(xc, yc) the inter-cluster
interaction. By Dxc (resp. Dyc) and by −∆xc (resp. −∆yc), we denote −i times the gradient and the
Laplacian in the inter-cluster (resp. intra-cluster) coordinates.
It is well known (see e.g. [DG]) that, for this Schrödinger operator P, the modified wave operators

Ω±,γ = s− lim
t→±∞

eitPe−it
(
−∆xc+

∫ t
0 Ic(sDxc ,0)ds+Eγ

)
Jγ (II.10)

exist for any scattering channel γ = (c, Eγ , φγ), where c is an arbitrary cluster decomposition, φγ is an
eigenfunction of Pc with eigenvalue Eγ : Pcφγ = Eγφγ , and where Jγ denotes the identification operator,
which is defined for any L2-function f of the variable xc by

(Jγf)(xc, yc) = f(xc)φγ(yc). (II.11)

Furthermore, the family of wave operators {Ω±,γ ,∀γ} is asymptotically complete. It is equally well known
(see [Ra]) that, if a = (a1, a2) is a two-cluster decomposition with one neutral cluster (an atom), say a1, i.e.∑

j∈a′1

ej = −Z1, (II.12)

then, for any channel α = (a,Eα, φα) with Eα outside the thresholds of Pa, one can define the wave operators
without modifier, namely by

Ω′
±,α = s− lim

t→±∞
eitPe−it

(
−∆xa+Eα

)
Jα. (II.13)

In this case, Ω±,α = Ω′
±,αe

iψ(Dxa ), where ψ is a real function. Therefore the result on asymptotic complete-
ness remains true if we replace Ω±,α by Ω′

±,α when the latter exists. So we just set Ω±,γ = Ω′
±,γ if they

exist.
For any two scattering channels γ, δ, we then define the associated scattering matrix from channel γ to
channel δ by

Sδγ = Ω∗
+,δΩ−,γ , Tδγ = Sδγ − δδγ , (II.14)

where δδγ = 1 if γ = δ and 0 otherwise. We are interested in the finiteness of the total scattering cross-section
(involving summation over all outgoing channels δ) with initial channel α = (a,Eα, φα), where a = (a1, a2)
and a1 satisfies (II.12). Since few is known about the scattering amplitude in many-body scattering theory,
we define the total scattering cross-sections as distributions in energy (cf. [ES],[RW]). In Appendix A,
we give an invariant definition of general total scattering cross-sections. Here we restrict ourselves to the
definition of σα, using the h-dependence established in Appendix B (by explicitly computing the formulae
in Appendix A for the clustered atomic coordinates introduced above).

For λ ≥ Eα(h), we introduce the magnitude of the momentum associated with the kinetic energy of the
relative motion of the two clusters in the scattering channel α via

nα(λ;h) := λ1/2
α (h), λα(h) := λ− Eα(h). (II.15)

For each unit vector ω ∈ S2, we introduce the plane wave

x 7→ exp(ih−1nα(λ;h)ω · x)
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of energy λα(h), which satisfies

−h2∆x e
ih−1nα(λ;h)ω·x = (λ− Eα(h)) eih

−1nα(λ;h)ω·x ∀x ∈ R3 . (II.16)

For g ∈ C∞0 (Iα; C), Iα =]Eα(h);+∞[, we consider the wave packet

R3 3 x 7→ gω(x) =
1

2
√
πh

∫
R
eih

−1nα(λ;h)ω·x g(λ)
nα(λ;h)1/2

dλ , (II.17)

(for the normalization of this wave packet we refer to (B.5)). Denoting by C the set of all channels, we want
to apply, for δ ∈ C, Tδα to gω(x)φα(y;h). Since this function does not belong to L2(R3(N+1)) - it decays
rapidly only in the direction defined by ω - we regularize it by multiplication with a function hR,ω ∈ L∞(R3),
depending only on the variable x− (ω · x)ω transversal to the direction ω of the incident wave packet gω(x),
such that pointwisely

lim
R→∞

hR,ω = 1 . (II.18)

For the purpose of this paper we shall specify this cut-off function to be a Gaussian, i.e. we take

hR,ω(x) = e−(x−(ω·x)ω)2/R (II.19)

For ω ∈ S2, the total cross-section σα(·, ω) exists as a distribution on Iα if, for all g ∈ C∞0 (Iα; C), the limit

lim
R→∞

∑
δ∈C

‖TδαhR,ωgωφα‖2L2(R3(N+1)) (II.20)

exists and defines a distribution on the interval Iα. A more refined kinematic analysis in the framework of
N-particle scattering due to Agmon will show in Appendix B that for some h-dependent constant Ca(h) of
order O(1) in the semiclassical parameter (see (B.3)), the total scattering cross-section σα(·, ω) satisfies in a
natural way the defining equation∫ +∞

Eα(h)

σα(λ, ω)|g(λ)|2 dλ = Ca(h) lim
R→∞

∑
δ∈C

‖TδαhR,ωgωφα‖2L2(R3(N+1)), (II.21)

for all g ∈ C∞0 (Iα; C) (see (B.8). For physical background of this definition and its equivalence to the usual
one, see [ES], [RW], [W], [Jec]. For some channels γ, δ and some incident direction ω, total scattering cross-
sections may not exist on any interval I (see [W]). Usually it is required that the interactions decay quite
rapidly to ensure their existence. In the present situation with Coulomb interactions, which a priori do not
decay sufficiently fast, we shall show the existence, i.e. finiteness, of σα only for some special channel α
describing atom-ion scattering, for all incident directions ω ∈ S2. The conditions on α are collected in the
following hypothesis.

Hypothesis 1. Let α = (a,Eα, φα) be a channel with cluster decomposition a = (a1, a2) such that each
cluster contains a nucleus and such that a1 is neutral, that is∑

j∈a′1

ej = −Z1 . (II.22)

Assume further that there is a unique decomposition

Eα = Eα,1 + Eα,2 with Eα,j ∈ σdisc(Paj ) , j = 1, 2 , (II.23)

where Eα,1 (the eigenvalue of the neutral cluster) is non-degenerate and where Paj stands for the internal
Hamiltonian of cluster aj.

Under these assumptions, we can split the space L2(R3N ) of the internal variables into the direct sum

L2(R3N ) = L2(R3|a′1|) ⊕ L2(R3|a′2|) , (II.24)
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where |a′j | denotes the cardinality of a′j := aj \ {j}, for j = 1, 2. We write y = (y1, y2) for the electronic
coordinates in the clusters a′1, a

′
2 and we have

φα(y) = φα,1
(
y1

)
φα,2

(
y2

)
, ∀y ∈ R3N , (II.25)

with Pajφα,j = Eα,j φα,j .

From (II.7), we see that Pa1 is invariant under the action of the orthogonal group O(3,R) in L2(R3|a′1|)

φ
(
z1 , · · · , z|a′1|

)
7→ φ

(
o · z1 , · · · , o · z|a′1|

)
, (II.26)

where o ∈ O(3,R). It follows that, under Hypothesis 1, the eigenfunction φα,1 is invariant under this action.
In particular,

φα,1
(
−y1

)
= φα,1

(
y1

)
∀y1 ∈ R3|a′1| . (II.27)

In Theorem II.1 below, we shall only use that∣∣φα,1(−y1)∣∣ =
∣∣φα,1(y1)∣∣ ∀y1 ∈ R3|a′1| . (II.28)

We denote by R(z;h) the resolvent of P(h) and recall that its boundary value R(λ ± i0;h) : L2,s → L2,−s

is well defined outside the set T of the thresholds and the eigenvalues of P(h) as an operator between the
weighted L2 spaces, for any s > 1/2.

Our first main result concerns the existence of σα and gives a useful formula for it.

Theorem II.1. Let α = (a,Eα(h), φα(h)) be a scattering channel satisfying Hypothesis 1. Let T be the
set of thresholds and eigenvalues of P. For any incident direction ω ∈ S2, the total scattering cross-section
σα(·, ω) exists on ]Eα(h);+∞[\T and satisfies, for any function g ∈ C∞0 (Iα \ T ; C),∫ +∞

Eα(h)

σα(λ, ω)|g(λ)|2 dλ =
∫ +∞

Eα(h)

Ca(h)h−1

nα(λ;h)
Im

〈
R(λ+ i0) Iaeα , Iaeα

〉
L2(R3(N+1))

|g(λ)|2 dλ , (II.29)

where
eα(x, y) = eih

−1nα(λ;h)ω·xφα(y;h)

is a plane wave describing free motion of the clusters in channel α and where the bounded function Ca(h) is
introduced in (B.3). Furthermore, we can identify σα(·, ω) with the continuous function

σα(λ, ω) =
Ca(h)h−1

nα(λ;h)
Im

〈
R(λ+ i0) Iaeα , Iaeα

〉
L2(R3(N+1))

, (II.30)

for λ ∈ Iα \ T .

Since Iaeα does not belong to L2,s, for some s > 1/2, this result is not trivial. Its proof - given in Section III -
depends crucially on the decay of some appropriate effective potentials, combined with phase space analysis,
i.e. an appropriate localization in the relative kinetic energy of the two clusters. Next we are interested
in the semiclassical behavior (h → 0) of σα. Inspired by [RT], [RW], and [Jec], we expect - under suitable
supplementary conditions - to be able to find its right order in h and to exhibit leading terms expressed in
terms of effective potentials. This is indeed the case, and it is expressed in Theorem II.2 below. This is our
second main result.

In view of (II.30), we shall need semiclassical resolvent estimates, which were essentially established in
[KMW2]. In fact, our present situation is contained in the context of [KMW2] except that the Coulomb pair
potentials are not of short range (which was assumed there for reasons of simplicity to deal with the usual
wave operators). For the resolvent estimates, the arguments of [KMW2] still work.

First of all, we restrict ourselves to the groundstate energy of Pa and demand some stability property w.r.t.
x and h.
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Hypothesis 2. Let Eα(h) be the bottom of the spectrum of Pa(h). It is known that Eα(0) is a non-degenerate,
isolated eigenvalue. Let λ0 > Eα(0). From (II.7), we see that, for some δ > 0, λ0 − δ > Eα(h), Eα(h)
being also a non-degenerate, isolated eigenvalue. Let λ1(x;h) be the bottom of the spectrum of Pe(x;h). We
assume that, for h small enough (say h ≤ h0) and for x in a neighborhood Oλ0 of the non-compact set

{x ∈ R3 ; λ1(x; 0) ≤ λ0 } ,

λ1(x;h) is a simple eigenvalue, is the unique eigenvalue of Pe(x;h) that tends to Eα(h) as |x| → ∞, and the
unique eigenvalue of Pe(x;h) that tends to λ1(x; 0) as h→ 0. Furthermore, we demand that

λ1(x;h) → Eα(h) as |x| → ∞ , uniformly w.r.t. h ≤ h0 , (II.31)
λ1(x;h) → λ1(x; 0) as h → 0 , uniformly w.r.t. x ∈ Oλ0 . (II.32)

Note that there exists δ0 > 0, such that, for h0 small enough and 0 ≤ h ≤ h0,

{x ∈ R3 ; λ1(x;h) ≤ λ0 + δ0 } ⊂ Oλ0 .

We also impose that, for h0 small enough and 0 ≤ h ≤ h0,

inf
x∈Oλ0

(
σ
(
Pe(x;h)

)
\ {λ1(x;h)}

)
> λ0 + 2δ0 , (II.33)

where σ(Pe(x;h)) denotes the spectrum of Pe(x;h).

Under Hypothesis 2, we shall construct a so called adiabatic operator PAD, which is a good approximation
of P below the energy λ0. For x ∈ Oλ0 , let ψe(x;h) be a normalized eigenfunction of Pe(x;h) associated
to λ1(x;h). As in [KMW2], we can extend it to a smooth, normalized function φe(x;h) of x such that, for
some δ1 > 0, 〈

Pe(x;h)φe(x;h) , φe(x;h)
〉
≥ λ0 + δ1 , (II.34)

for all 0 ≤ h ≤ h0 and for all x in some compact neighborhood K of the complement of Oλ0 , satisfying

K ⊂ {x ∈ R3 ;λ1(x;h) > λ0 , 0 ≤ h ≤ h0 } .

We denote the orthogonal projection on the one-dimensional space generated by φe(x;h) by Π(x, h). It
induces a projection Π(h) on L2(R3(N+1)). The orthogonal projection Π0(h) onto φα(h) (introduced in
Hypothesis 1) also induces a projection on L2(R3(N+1)), which we still denote by Π0(h). We then define the
adiabatic operator associated with the spectral projection Π(h) by PAD(h) := Π(h)PΠ(h). We denote by
RAD(z;h) its resolvent and set Π̂(h) = 1−Π(h) and Π̂0(h) = 1−Π0(h).

We consider an energy range J ⊂]Eα;λ0[. Let ψt be the Hamiltonian flow of the effective Hamiltonian
function

Heff(x, ξ) = |ξ|2 + λ1(x; 0)− Eα(0). (II.35)

An energy λ ∈ R is non-trapping for Heff if, for all (x, ξ) belonging to the energy surface of Heff of energy λ,
the point ψt(x, ξ) goes to infinity as t and −t go to +∞.

Hypothesis 3. Let J an open interval of R such that J is non-trapping for the effective Hamiltonian
function Heff , i.e. λ is a non-trapping energy for Heff for all λ ∈ J .

Note that such an interval J is contained in Iα \ T , for h small enough. Thus Theorem II.1 holds on J . In
our context we need such a hypothesis to obtain a semiclassical estimate on the resolvent.

It is, however, not at all obvious to find a (physical) diatomic molecule and some energy range J such that
Hypotheses 2 and 3 hold. For |x| large enough, the stability of the eigenvalues and the gap condition in
Hypothesis 2 are reasonable and should hold in the generic case (see [HV]), and the non-trapping condition
holds. Therefore one may enforce the validity of these hypotheses by adding some smooth, fast decaying
potential V (x) in the definition (II.1) of the Hamiltonian P. Since the asymptotic behavior of the total
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cross-section depends only on the decay at infinity of some effective potential, one does not change the
leading term of the cross-section if this additional potential decays sufficiently fast. More precisely, we shall
demand that the additional potential V (x) ∈ C∞(R3

x,R) satisfies, for some sufficiently large ρ > 0,

∀γ ∈ N3 , ∃Cγ > 0 ; ∀x ∈ R3 ,
∣∣∂γxV (x)

∣∣ ≤ Cγ〈x〉−ρ−|γ| , (II.36)

where 〈x〉 := (1 + |x|2)1/2. In view of our asymptotic estimates on the following relevant effective potentials
we can actually choose ρ = 5. A natural borderline would be decay faster than some ρ > 4, but to treat this
case requires some modification of our proof.
Under the previous hypotheses, we shall derive in Proposition IV.1 semiclassical estimates on R(λ± i0) and
RAD(λ± i0), for λ ∈ J , using arguments developed in [KMW2]. Finally we introduce the effective potentials
which govern the leading terms of σα. Denoting by C2 the electronic charge of a2, that is

C2 =
∑
j∈a′2

ej , (II.37)

we define the function
C(x̂, y) =

(
C2 + Z2

) ∑
l∈a′1

elx̂ · yl , (II.38)

where x̂ = x/|x| and where · denotes the standard scalar product in R3. Physically, this function describes
the interaction of the dipoles formed by the electrons in cluster a1 with the effective charge of cluster a2.
Define

R̂a(h) = (P a(h)Π̂0(h)− Eα(h))−1Π̂0(h). (II.39)

The effective potentials we consider are given by

Ieff(x) := λ1(x; 0) − Eα(0) (II.40)
Îeff(x) := −2

〈
R̂a(0)Π̂0(0)C(x̂, y)φα(0), Π̂0(0)C(x̂, y)φα(0)

〉
L2(R3N

y )
|x|−4 . (II.41)

We prove in Lemma IV.2 that Îeff(x) is everywhere negative if C2 +Z2 6= 0. Of course, Ieff(x) is the effective
potential which one expects in the context of the Born-Oppenheimer approximation. The other form of
effective potential, Îeff(x), is also known in the physics literature. It is especially suited to compute the
asymptotic behavior of the effective interaction as |x| → ∞. We remark that the presence of the reduced
resolvent in Îeff(x) shows - in formal physical language - that the scattering cross-section is dominated by
second order perturbation theory, since the term in first order perturbation theory actually is O(|x|−5)
because the effective dipole (and higher) moments in both clusters a1, a2 vanish in view of the rotational
invariance of the total wave function φα,1, see (II.26). We shall show in Lemma IV.2 that these 2 useful
forms of the effective potential agree in leading order, i.e.

|Ieff(x)− Îeff(x)| = O(|x|−5), as |x| → ∞. (II.42)

It is essentially this fact which allows to use either form of effective potential to describe the leading order of
the total scattering cross-section in equation (II.44) below. Now we can state our second main result, which
gives the semiclassical asymptotics of σα.

Theorem II.2. Let α = (a,Eα(h), φα(h)) be a scattering channel satisfying Hypothesis 1 and Hypothesis 2.
Let J be a real interval satisfying Hypothesis 3. Then we have

σα(λ, ω) = O
(
h−2/3

)
, (II.43)

locally uniformly w.r.t. λ ∈ J and ω ∈ S2. We set nα(λ; 0) = (λ − Eα(0))1/2 and we denote by Hω the
hyperplane orthogonal to ω. Then there exists some ε0 > 0 such that, for either choice of effective potential,
i.e. for I = Ieff and I = Îeff , we have

σα(λ, ω) = 4Ca(h)
∫
Hω

sin2

(
1

4hnα(λ; 0)

∫
R

I(u+ sω)ds
)
du + O

(
h−2/3+ε0

)
, (II.44)
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locally uniformly w.r.t. λ ∈ J and ω ∈ S2. Here the function Ca(h), depending on the cluster decomposition
and the masses, satisfies Ca(h) + Ca(h)−1 = O(1) as h → 0 (see (B.3)). Furthermore, if a2 is not neutral
(i.e. the electronic charge C2 of a2 satisfies C2 6= −Z2), the leading term (II.44) with I = Îeff is exactly of
order h−2/3 and thus is σα.

Remark II.3. By saying that σα is exactly of order h−2/3, we mean that there exist two h-independent
constants C1, C2 > 0, such that C1 ≤ h2/3σα(h) ≤ C2, for h small enough. The proof of this fact uses the
special form of Îeff and arguments from [Y]. Applying (II.44) for I = Ieff , we then see that the corresponding
leading term is also exactly of order h−2/3, which a priori is not clear at all. In particular, the Born-
Oppenheimer approximation correctly describes the asymptotics of the total scattering cross-section in the
situation considered in this paper.

III Existence of the total scattering cross-section

In this section we shall prove the existence of the total scattering cross-section as stated in Theorem II.1.
In particular, we shall assume throughout this section that the initial channel α is associated to a two-
cluster decomposition a = (a1, a2) with a1 a neutral cluster, that is, (II.22) holds for a1. Then ‖Tααu‖2 is
independent of the modifier used in (II.10) and thus, in view of the optical Theorem expressed by equation
(III.3) below, σα(·, ω), if it exists, is independent of the choice of modifiers. As a first step, we establish the
following representation formula. Here we use the function uR,ω = gωhR,ω, where gω, hR,ω are defined in
(II.17) and (II.19).

Lemma III.1. For g ∈ C∞0 (Iα; C), Iα :=]Eα; +∞[, one has∑
β∈C

‖TβαuR,ωφα‖2 = 4π
∫
Iα

Im〈R(λ+ i0)IaφαuR,ω(λ), IaφαuR,ω(λ)〉dλ (III.1)

where

uR,ω(λ, x) =
R

8h

(
nα(λ)
πh

)3/2 ∫
S2
+

eih
−1nα(λ)x·θ− R

4h2 λα(θ22+θ23)
√
θ1g(λαθ21 + Eα)dθ, (III.2)

where θ1 = θ · ω, the components θ2, θ3 denote the directions orthogonal to ω ∈ S2 and S2
+ denotes the half

sphere θ1 > 0, θ ∈ S2.

Proof: The asymptotic completeness of wave operators (which for some channels are possibly defined in an
appropriate modified form) gives ∑

β

||Ω∗
+,βu||2 = ||u||2

for u in the absolutely continuous spectral subspace of P . Thus∑
β

||Tβαu||2 =
∑
β

||Ω∗
+,β(Ω−,α − Ω+,α)u||2 = ||(Ω−,α − Ω+,α)u||2 = −2Re〈Tααu, u〉 (III.3)

Using the spectral representation Fα(λ) and the identification operator Jα associated with the channel α
introduced in (B.6) and (II.11) one has (see [W])

Tαα(λ) = Fα(λ)TααFα(λ)∗ = −2πiFα(λ)J∗α(Ia − IaR(λ+ i0)Ia)JαFα(λ)∗ (III.4)

for λ ∈ Iα. Since Fα(λ) : L2(R3
x) → L2(Iα, L2(S2)) is isometric, one gets

Re〈Tααuφα, uφα〉L2(R3
x) = −2π

∫
Iα

Im〈Fα(λ)J∗αIaR(λ+ i0)IaJαFα(λ)∗Fα(λ)u, Fα(λ)u〉L2(S2)dλ

= −2π
∫
Iα

Im〈R(λ+ i0)Iaφαu(λ), Iaφαu(λ)〉L2(R3(N+1))dλ, (III.5)



JKW, 03-04-2000 9

where u ∈ S(R3
x). In view of of (B.6) we have

u(λ, x) = Fα(λ)∗Fα(λ)u =
1
2
(2πh)−3nα(λ)

∫
S2×R3

eih
−1nα(λ)(x−y)·θu(y)dydθ. (III.6)

Taking u = uR,ω = gωhR,ω, we combine (III.3) with (III.5) to obtain the representation formula (III.1). To
compute uR,ω(λ, x), we assume w.l.o.g. that ω = (1, 0, 0). Then gω is a function only of x1 and one calculates
with the notation θ′ = (θ2, θ3), y′ = (y2, y3)∫

R3
e−ih

−1nα(λ)y·θuR,ω(y)dy =
∫

R
e−ih

−1nα(λ)y1θ1gω(y1)dy1 ·
∫

R2
e−ih

−1nα(λ)(y′·θ′)−y′2/Rdy′

= 2(πh)1/2g(λαθ21 + Eα)(na(λ)θ1)1/2H+(θ1) · πRe−
R

4h2 λαθ
′2

(III.7)

where H+ denotes the Heavyside function. Integrating over θ in (III.6) with u = uR,ω gives the asserted
formula for the transformed function uR,ω(λ, x).
Writing θ′ = (θ2, θ3), setting Bε,R = {θ′ ∈ R2; |θ′| ≤ R−(1−ε)/2} and using dθ = (1 − θ′

2)−1/2dθ′ on S2
+, we

note that equation (III.2) implies

uR,ω(λ, x) =
R

8h

(
nα(λ)
πh

)3/2 ∫
Bε,R

eih
−1nα(λ)(x1

√
1−θ′2+x′·θ′)e−

R
4h2 λαθ

′2
(1− θ′

2)−1/4g(λ− λαθ
′2)dθ′

+Oε(|Rλα|−∞), (III.8)

uniformly in x ∈ R3. For |θ′| ≤ R−(1−ε)/2 we change variables via τ =
√
Rθ′ and, considering separately the

regions |x| > Rε/2 and |x| < Rε/2, we observe that, for ε sufficiently small,

〈x〉−ε|eih
−1nα(λ)(x1

√
1−τ2/R+ τ√

R
·x′) − eih

−1nα(λ)x1 | ≤ Cnα(λ)(1 + τ2)R−ε/2.

Taylor expansion of the integrand in equation (III.8) combined with the evaluation of the Gaussian integral∫
R2
e−

R
4h2 λαθ

′2
dθ′ =

4πh2

Rλα

gives

Lemma III.2. For any ε > 0, N ∈ N there exists C > 0 such that

|uR,ω(x, λ)− 1
2

(
1

πhnα(λ)

)1/2

g(λ)eih
−1nα(λ)x·ω| ≤ C〈x〉εR−ε/2|nα(λ)|−N (III.9)

uniformly in x ∈ R3, R ≥ 1 and nα(λ) ≥ c > 0, for fixed h.

We shall now derive Theorem II.1 as an easy consequence of

Theorem III.3. Let χ ∈ C∞0 (R) be equal to 1 on [−δ/2, δ/2] with supp χ ⊂ (−δ, δ). Assuming Hypothesis
1, there exists δ > 0 such that for any λ ∈ Iα \ T and for u, v ∈ L∞(R3

x) with

χ(−h2∆x − λα)u = u, χ(−h2∆x − λα)v = v (III.10)

one has
|〈R(λ+ i0)Iaφαu, Iaφαv〉| ≤ Cs||〈x〉−su||L∞ ||〈x〉−sv||L∞ (III.11)

where 0 ≤ s < 1/2 and Cs is independent of λ in any compact subset of Iα \ T .

Proof of Theorem II.1: It is well known that the map

(Iα \ T ) 3 λ 7→ 〈(x, y)〉−sR(λ+ i0)〈(x, y)〉−s
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is continuous for any s > 1/2. From Theorem III.3 - and its proof - we see that the function

fα(λ, ω) := 〈R(λ+ i0)Iaφαeih
−1nα(λ)x·ω, Iaφαeih

−1nα(λ)x·ω〉 (III.12)

is well defined and continuous for λ ∈ Iα \ T . Let uR,ω(λ) be the function defined in Lemma III.1. Then
uR,ω(λ) and eih

−1nα(λ)x·ω are L∞−functions satisfying the condition (III.10) in Theorem III.3. Therefore,
combining Lemma III.2 with the definition of fα and uR,ω(λ), we find that for some 0 < s < 1/2∣∣∣∣〈R(λ+ i0)IaφαuR,ω(λ), IaφαuR,ω(λ)〉 − |g(λ)|2

4πhnα(λ)
fα(λ, ω)

∣∣∣∣
≤ C

∥∥∥∥〈x〉−s (
uR,ω(λ)− g(λ)

2(πhnα(λ))1/2
eih

−1nα(λ)x·ω
)∥∥∥∥

L∞

≤ CMR
−s/2|nα(λ)|−M , (III.13)

for all M, |nα(λ)| ≥ c > 0. This estimate proves that for any g ∈ C∞0 (Iα \ J), the limit

lim
R→∞

∑
β∈C

‖TβαhR,ωgωφα‖2

exists. From the definition of the total scattering cross section in equation II.21 we obtain∫
σα(λ, ω)|g(λ)|2dλ = Ca(h)h−1

∫
Imfα(λ, ω)

|g(λ)|2

nα(λ)
dλ

Thus we have

σα(λ, ω) =
Ca(h)h−1

nα(λ)
Im〈R(λ+ i0)Iaeα, Iaeα〉 (III.14)

as a distribution in D′(Iα \ T ). Since the right hand set of equation (III.14) is a continuous function of
λ ∈ Iα \ T , so is the scattering cross-section σα(λ, ω).

The remaining part of this section is devoted to proving Theorem III.3. This is divided into several steps
which shall be stated as distinct Lemmata. Here we are inspired by the weighted L2 estimates and the phase
space decomposition in [CT].

Lemma III.4. If u ∈ L∞(R3
x) satisfies χ(−h2∆x − λα)u = u, with χ as in Theorem III.3, then(

1− χ(−h2∆x − λα)
)
Iaφαu ∈ L2,s(R3(N+1))

for any s < 3/2 and

||
(
1− χ(−h2∆x − λα)

)
Iaφαu||L2,s(R3(N+1)) ≤ Cs,s′ ||〈x〉−s

′
u||L∞ (III.15)

for any s, s′ with s+ s′ < 3/2.

Proof: Let Γ be the set of all possible collisions between nuclei and electrons, described in the coordinates
(x, y), as defined in equation (C.1) of Appendix C. We choose a cut-off function χ̃ ∈ C∞0 (R3(N+1)) with
0 ≤ χ̃ ≤ 1, which is equal to 1 in a small conic neighborhood of Γ and vanishes outside a slightly bigger
conic neighborhood. Then

χ̃Iaφαu ∈ L2,s(R3(N+1)) and
(
1− χ(−h2∆x − λα)

)
χ̃Iaφαu ∈ L2,s(R3(N+1)), ∀s > 0

On the support of 1− χ̃, the interaction potential Ia is smooth, and since the cluster a1 is neutral, we have
for Ĩa = (1− χ̃)Ia

Ĩa(x, y)φα = O(|x|−2), ∂xĨa(x, y)φα = O(|x|−3) in L2,s(R3N
y ), ∀s > 0.
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Next we rewrite (
1− χ(−h2∆x − λα)

)
(̃Iaφαu) = −[χ(−h2∆x − λα), Ĩa](φαu)

The kernel of the commutator −[χ(−h2∆x − λα), Ĩa] is given by

K(x, x′) =
1

(2πh)3

∫ (
Ĩa(x, y)− Ĩa(x′, y)

)
eih

−1ξ·(x−x′)χ(ξ2 − λα)dξ

=
ih

(2πh)3

∫
eih

−1ξ·(x−x′)
∫ 1

0

(
2ξ · ∂xĨa

)
(x′ + t(x− x′), y)dt χ′(ξ2 − λα)dξ (III.16)

An easy analysis shows that

[χ(−h2∆x − λα), Ĩa](φαu) = O(|x|−3) in L2,s(R3N
y ),∀s > 0.

This implies the first statement of the Lemma. The asserted norm estimate (III.15) is evident from the
above proof.

Lemma III.5. Let φβ be a normalized eigenfunction of P a : P aφβ = Eβφb with eigenvalue Eβ ≤ Eα. Then

〈Iaφα, φβ〉L2(R3N
y ) ∈ L2,s(R3

x) ∀s < 1/2, (III.17)

and in the case Eα = Eβ we have the improved estimate

〈Iaφα, φβ〉L2(R3N
y ) ∈ L2,s(R3

x) ∀s < 3/2. (III.18)

Proof: We use an explicit computation to check the case Eα = Eβ . In this case, Hypothesis 1 implies that

φβ(y) = φα,1(y1)φβ,2(y2)

where
P a2φβ,2 = Eα,2φβ,2, ||φβ,2|| = 1

Setting x̂ = x
|x| , we have modulo a term in L2,s(R3

x), for any s < 3/2 and for |x| > 1,

〈Iaφα, φβ〉L2(R3N
y ) =

1
|x|2

((C1 + Z1)∆2,β(x̂)− (C2 + Z2)∆1,β(x̂)) (III.19)

where
Cj =

∑
k∈a′j

ek, j = 1, 2

and

∆j,β(x̂) =
∑
k∈a′j

ek

∫
x̂ · ykφα(y)φβ(y)dy

=
∑
k∈a′j

ek

∫
x̂ · yk|φα,1(y1)|2φα,2(y2)φβ,2(y2)dy, y = (y1, y2)

Since C1 = −Z1, one has, modulo a term in L2,s(R3
x), for any s < 3/2,

〈Iaφα, φβ〉 = − 1
|x|2

(C2 + Z2) ∆1,β(x̂)

Using equation (II.28) - which is a consequence of Hypothesis 1 - we see that

y1 7→
∑
k∈a′j

ek

∫
x̂ · yk|φα,1(y1)|2
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is an odd function. Thus its integral vanishes and

∆1,β(x̂) = 0,

which proves (III.18). The proof of (III.17) is similar.

We shall now localize in energy using the spectral projections for P a. We set 2δ := dist (Eα, σ(P a)\{Eα} > 0
and denote by Π1 the spectral projection of P a associated with Eα and by Π2,Π3 the spectral projections
associated with the intervals ] − ∞, Eα[ and ]Eα,∞[. The projections Πj are regarded as operators in
L2(R3(N+1)). It is then possible to estimate on the range of the spectral projections Π2,Π3 the resolvent

Ra(z, h) = (Pa(h)− z)−1

of the Hamiltonian Pa describing the free motion of the clusters, which was defined in (II.9). One finds

Lemma III.6. Let χ ∈ C∞0 (]− δ, δ[) and u ∈ L∞(R3
x). For j = 2, 3 we have the weighted estimate

||〈y〉s〈x〉s
′
Ra(λ± i0)Πjχ(−h2∆x − λa)(Iaφαu)|| ≤ C||〈x〉−s

′′
u||L∞

for all s > 0 and for all s′, s′′ satisfying s′ + s′′ < 1/2.

Proof: Setting ψ = Iaφau, we have Π2ψ =
∑
Eβ<Eα

〈ψ, φβ〉L2(R3N
y )φβ , where {φβ} is an orthonormal set of

eigenfunctions of P a with eigenvalue Eβ < Eα. By definition of δ, if |ξ2 − λα| < δ, then

ξ2 + Eβ − λ = ξ2 − λα + Eβ − Eα

is invertible. Thus, using the support properties of χ, the function gβ(ξ, λ) = χ(ξ2 − λα)(ξ2 + Eβ − λ)−1 is
bounded and smooth, for Eβ as above. Furthermore

Ra(λ± i0)χ(−h2∆x − λα)Π2ψ =
∑

Eβ<Eα

gβ(hDx, λ)〈ψ, φβ〉L2(R3N
y )φβ . (III.20)

Using decay of φβ in the variable y (which follows from standard estimates) one can apply Lemma III.5 with
s = s′ + s′′ < 1/2 to get the asserted estimate for j = 2. For j = 3, we have P a3 := Π3P

aΠ3 ≥ (Eα + 2δ)Π3.
Applying the Fourier transformation with respect to the x-variable, we see as above that

Ra(λ± i0)χ(−h2∆x − λα)Π3 = (P a3 + h2D2
x − λ)−1χ(h2D2

x − λα)Π3

is well defined as a bounded operator on L2(R3(N+1)). Applying the method of commutators, one can verify
by induction that ∥∥∥〈y〉s〈x〉s′(P a3 + h2D2

x − λ)−1χ(D2
x − λα)Π3〈y〉−s〈x〉−s

′
∥∥∥
L(L2)

≤ C

for any s, s′ ∈ R. Granted this, the estimate for j = 3 follows from the following weighted estimate on ψ∥∥∥〈y〉s〈x〉s′Iaφαu∥∥∥
L2
≤ C‖u‖L∞ ,

for any s, s′ < 1/2, which is an easy consequence of decay of φα in y and fall-off proportional to |x|−2 of
‖Iaφα‖L2(R3N

y ).

Piecing together the results of these Lemmata, we are now ready to give the

Proof of Theorem III.3: Let δ > 0 be given as above and let λ ∈ Iα \ J . We then decompose ψ = Iaφαu
into 4 pieces via

ψ =
3∑
j=0

ψj , ψ0 = (1− χ(h2D2
x − λα))ψ, ψj = Πjχ(h2D2

x − λα)ψ, j = 1, 2, 3. (III.21)
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Similarly, for v ∈ L∞(R3
x), with u, v satisfying equation (III.10), we decompose φ := Iaφαv :=

∑3
j=0 φj . This

gives

〈R(λ+ i0)ψ, φ〉 =
3∑

j,k=0

〈R(λ+ i0)ψj , φk〉. (III.22)

For j = 0, 1, we get from Lemma III.4 and III.5 that ψj , φj ∈ L2,s(R3(N+1)), ∀s < 3/2. This gives for
j, k = 0, 1, using the weighted estimate for the resolvent,

|〈R(λ+ i0)ψj , φk〉| ≤ C‖〈(x, y)〉sψj‖‖〈(x, y)〉sφk‖
≤ C1‖〈x〉−s

′
u‖L∞‖〈x〉−s

′
v‖L∞ , (III.23)

for any s > 1/2, 0 < s′ < 3/2−s. In the case j = 0, 1, but k = 2, 3, we decompose further using the resolvent
equation

R(λ+ i0) = Ra(λ+ i0)−Ra(λ+ i0)IaR(λ+ i0).

This gives

|〈R(λ+ i0)ψj , φk〉| ≤ C
(
‖〈x〉sψj‖‖〈x〉−sRa(λ− i0)φk‖+ ‖〈(x, y)〉sψj‖‖〈x〉−1+sRa(λ− i0)φk‖

)
≤ C1‖〈x〉−s

′
u‖L∞‖〈x〉−s

′
v‖L∞ , (III.24)

for any s > 1/2, 0 < s′ < 3/2 − s. We have used the weighted estimate on the resolvent R(λ ± i0) and on
ψj , for j = 0, 1, - as explained after equation (III.22) - to estimate the contribution of ψj and we have used
Lemma III.6 to estimate the contribution of φk. Interchanging j, k we obtain the same estimates for the
other cross terms j = 2, 3 and k = 0, 1.
Finally, to treat the case j, k = 2, 3, we iterate the resolvent equation once more:

R(λ+ i0) = Ra(λ+ i0)−Ra(λ+ i0)IaRa(λ+ i0) +Ra(λ+ i0)IaR(λ+ i0)IaRa(λ+ i0). (III.25)

The first 2 terms on the rhs of this equation are easily handled by Lemma III.6 and give

|〈Ra(λ+ i0)ψj , φk〉| ≤ C‖〈x〉−s
′
u‖L∞‖〈x〉−s

′
v‖L∞ , ∀s′ < 1/2

|〈Ra(λ+ i0)IaRa(λ+ i0)ψj , φk〉| ≤ C‖〈x〉−s
′
u‖L∞‖〈x〉−s

′
v‖L∞ , ∀s′ < 1. (III.26)

For the third term on the rhs of equation III.25 we obtain, again via Lemma III.6,

|〈Ra(λ+ i0)IaR(λ+ i0)IaRa(λ+ i0)ψj , φk〉| ≤ C‖〈x〉−1+sRa(λ+ i0)ψj‖‖〈x〉−1+sRa(λ− i0)φk‖
≤ C‖〈x〉−s

′
u‖L∞‖〈x〉−s

′
v‖L∞ , (III.27)

for any s > 1/2, 0 < s′ < 3/2− s. Choosing s arbitrarily close to 1/2 and adding equations (III.23), (III.24),
(III.26) and (III.27) proves Theorem III.3.

IV Semiclassical estimate of the total scattering cross-section σα

This section is devoted to the proof of Theorem II.2. Thus, within this section, we shall always assume
Hypothesis 1,2 and 3. To study the semiclassical behavior of the total scattering cross-section σα, we shall
follow the strategy developed in [RT] (see also [RW], [Jec]). First, in Subsection IV.1, we establish some
results on the potentials and the resolvents, using essentially the arguments of [KMW2]. Then, in Subsection
IV.2, we prove the upper bound (II.43) in Theorem II.2 using the decay of the relevant effective potential.
Finally, in Subsection IV.3, we exhibit two (equivalent) leading terms of the total scattering cross-section,
which are exactly of order h−2/3. This then completes the proof of Theorem II.2.
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IV.1 Semiclassical behavior of potentials and resolvents.

To estimate (II.30), we need a semiclassical estimate on the boundary value of the resolvent and some
information on the decay of the function Iaeα.

In Appendix C, we derive the expansion of Iaφα for |x| large. The leading term involves the function C(x̂, ·)
given by (II.38) which describes the dipole moment in the neutral cluster. We shall see that R̂a(h), defined
in equation (II.39), also plays an important role. Indeed, it contributes to the effective potential Îeff defined
in (II.41). Using Appendix C, [KMW1] and [KMW2], we shall show the following facts.

Proposition IV.1. Let Γ be the h-dependent set of all possible collisions (defined in C.5) and let χ be an
h-dependent smooth function on R3(N+1), equal to one on some conic neighborhood of Γ, and equal to zero
on some bigger conic neighborhood. For any s ≥ 0, we have, uniformly w.r.t. h,

χIaφα ∈ L2
s

(
R3(N+1)

)
, (IV.1)

‖(1− χ)Iaφα‖y = O
(
〈x〉−2

)
, (IV.2)

where ‖ · ‖y denotes the norm of bounded operators on L2(R3N
y ). For |x| > 1, uniformly w.r.t. h,

‖Π(x;h) Ia(x, ·;h)φα‖y = O
(
|x|−4

)
, (IV.3)

Ieff(x) := λ1(x; 0)− Eα(0) = O
(
|x|−4

)
, (IV.4)

‖Π(x;h)
(
Ia(x, ·;h)− Ieff(x)

)
φα‖y = O

(
h2|x|−4

)
+O

(
|x|−5

)
, (IV.5)

‖Π(x;h)
(
Ia(x, ·;h)− Îeff(x)

)
φα‖y = O

(
h2|x|−4

)
+O

(
|x|−5

)
, (IV.6)

Furthermore, the smooth function R3 \ {0} 3 x 7→ Π(x;h) has the following properties. There exists µ > 0
such that, uniformly w.r.t. x and h,∑

|β|≤2

〈x〉4+|β|
∥∥∥eµ〈y〉Π(x;h)∂βx

(
Π(x;h)−Π0(h)

)
Π0(h)

∥∥∥
y

= 0(1) . (IV.7)

Note that (IV.7) remains true if the first projector Π(x;h) is replaced by Π0(h). The resolvents satisfy, for
all s > 1/2 and locally uniformly for λ ∈ J ,∥∥〈x− l(y)〉−sR(λ± i0)〈x− l(y)〉−s

∥∥ +
∥∥〈x〉−sRAD(λ± i0;h)〈x〉−s

∥∥ = 0(h−1) , (IV.8)∥∥〈x− l(y)〉−sR(λ± i0;h)Π̂
∥∥ = 0(h0) , (IV.9)∥∥∥〈x〉−sΠ(

R(λ± i0)− RAD(λ± i0;h)
)
Π〈x〉−s

∥∥∥ = 0(h0) . (IV.10)

Proof: (IV.1) follows from the exponential decay of the eigenfunctions φα(h), which is uniform w.r.t. h.
According to Appendix C, equation (IV.2) holds for |x| > 1 and uniformly w.r.t. h, and

∥∥(
Π0(h) + Π0(0)

)(
Ia(x;h) + Ia(x; 0)

)(
Π0(h) + Π0(0)

)∥∥
y

=
A(x̂;h)
|x|5

+ O
(
|x|−6

)
, (IV.11)

where x̂ = x/|x| and A(x̂;h) is uniformly bounded as h → 0. Furthermore, the operator 〈x〉2Ia(x;h)Π0(h)
is uniformly bounded. Using this fact, we can show, as in [KMW2], that∑

|β|≤2

〈x〉2+|β|
∥∥∥eµ〈y〉∂βx (

Π(x;h)−Π0(h)
)∥∥∥
y

= 0(1) . (IV.12)

Using (IV.12) and (IV.11), we obtain

Π(x;h)Ia(x;h)Π0(h) =
(
Π(x;h)−Π0(h)

)
Ia(x;h)Π0(h) + Π0(h)Ia(x;h)Π0(h)

= O
(
|x|−4

)
. (IV.13)
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Next, we show that
λ1(x;h)− Eα(h) = Îeff(x) + O

(
h2|x|−4

)
+ O

(
|x|−5

)
. (IV.14)

Using (IV.12), we first note that, since the eigenfunction φα(h) is normalized,

‖Π(x;h)φα(h)‖2y = 1 + O
(
|x|−2

)
.

Thus, according to (IV.11), for |x| large enough and writing 〈·, ·〉y for the scalar product in L2(R3N
y ), we

have

λ1(x;h)− Eα(h) =
〈
Π(x;h)φα(h) , Ia(x;h)Π(x;h)φα(h)

〉
y
/ ‖Π(x;h)φα(h)‖2y

=
〈
Π(x;h)φα(h) , Ia(x;h)Π(x;h)φα(h)

〉
y

+ O
(
|x|−6

)
= 2<

〈(
Π(x;h)−Π0(h)

)
φα(h) , Ia(x;h)Π(x;h)φα(h)

〉
y

+ O
(
|x|−5

)
= 2<

〈(
Π(x;h)−Π0(h)

)
φα(h) , Ia(x;h)φα(h)

〉
y

+ O
(
|x|−5

)
(IV.15)

Next, we use the following lemma, which will be proved after the present proof.

Lemma IV.2. Setting R̂a(z, h) = (P a(h)Π̂0(h) − z)−1Π̂0(h) and R̂a(h) = R̂a(Eα(h), h) (as in equation
(II.39)), we have, for |x| large enough and uniformly w.r.t. h,

2<
〈(

Π(x;h)−Π0(h)
)
φα(h) , Ia(x;h)φα(h)

〉
y

= −2
〈
R̂a(h)Π̂0(h)C(x̂, y)φα(h) , Π̂0(h)C(x̂, y)φα(h)

〉
y
· |x|−4 + O

(
|x|−5

)
. (IV.16)

In particular, the two forms of the effective potential satisfy equation (II.42), i.e.

|Ieff(x)− Îeff(x)| = O(|x|−5), as |x| → ∞.

Furthermore, the first term on the rhs of (IV.16) is negative, for all x 6= 0, if the cluster a2 is not neutral.

Using Lemma IV.2, we obtain (IV.14). By a Taylor expansion w.r.t. h and using the previous estimates,

Π(x;h)Ia(x;h)Π0(h) = Π(x;h)Ia(x; 0)Π0(h) + O
(
h|x|−6

)
= Π(x; 0)Ia(x; 0)Π0(0) + O

(
h2|x|−5

)
+ O

(
|x|−6

)
= Π(x; 0)

(
λ(x; 0)− Eα(0)

)
Π0(0) + O

(
h2|x|−5

)
+ O

(
|x|−6

)
= Π(x;h)

(
λ(x; 0)− Eα(0)

)
Π0(h) + O

(
h2|x|−5

)
+ O

(
|x|−6

)
.

We then have proved (IV.5). Using (IV.15), we derive (IV.6) from (IV.5).

Finally, we follow the arguments in [KMW2] to derive (IV.7) from (IV.13). Still following [KMW2], we
obtain resolvent estimates with the weight 〈x− l(y)〉. As already remarked in [KMW2], 〈x〉−sΠ(x)〈x− l(y)〉s
is uniformly bounded. Thus we may replace this weight by 〈x〉 if Π is present. We do this for the second
term in (IV.8) and in (IV.10).

Proof of Lemma IV.2: Equation(II.42) simply follows from (IV.15) and(IV.16), for h = 0. To prove
(IV.16), we write the projections as contour integrals. Let Γ a complex contour enclosing Eα(h) and λ1(x;h)
for h sufficiently small and |x| sufficiently large. For brevity, we shall now notationally suppress the depen-
dence on h. We rewrite the lhs of equation (IV.16) as

lhs (IV.16) = 2<
〈(

(Pe(x)− z̄)− (Pa − z̄)
)
φα ,

1
2iπ

∮
Γ

(
(Pe(x)− z)−1 − (Pa(x)− z)−1

)
dz φα

〉
y

= −2< 1
2iπ

∮
Γ

dz
(
(Eα − z)

〈
(Pe(x)− z)−1φα , φα

〉
y

+ (Eα − z)−1
〈
Ia(x)φα , φα

〉
y

)
= −2< 1

2iπ

∮
Γ

dz (Eα − z)
〈
(Pe(x)− z)−1φα , φα

〉
y

+ O
(
|x|−5

)
, (IV.17)
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by (IV.11). So we need to compute Π0Re(z)Π0, where Re(z) = (Pe(x) − z)−1. To this end, we use the
resolvent equation

Re(z) = Ra(z)−Ra(z)IaRa(z) +Ra(z)Ia(z)Re(z)IaRa(z) (IV.18)

which gives
Π0Re(z)Π0 = Ra(z)Π0 +Ra(z)Π0IaΠ̂0Re(z)Π̂0IaΠ0Ra(z) +O(|x|−5) (IV.19)

Inserting these estimates into (IV.17) and using Appendix C and (IV.11) again, we arrive at (IV.16) with
R̂a(h) replaced by Π̂0Re(Eα(h))Π̂0. But

‖Π̂0 (Re(Eα)−Ra(Eα)) Π̂0C(x̂; y)φα‖y = O(|x|−2), (IV.20)

uniformly w.r.t. h. This follows from a Neumann expansion of Re(z), exponential decay of φα, uniform
boundedness of the weighted reduced resolvent 〈y〉M R̂a〈y〉−M , for any M ≥ 0, combined with ‖Ia〈y〉−M‖y =
O(|x|−2). This proves equation (IV.20) and thus (IV.16).
Since R̂0(Eα(h)) ≥ b > 0, uniformly w.r.t. h, the first term on the rhs of (IV.16) is bounded above by
−b‖Π̂0C(x̂; y)φα(h)‖2/|x|4. Since

‖Π0C(x̂; ·)φα(h)‖2y = 0

by the rotational invariance of φα,1 (see Appendix C), we have

‖Π̂0C(x̂; y)φα(h)‖2y = ‖C(x̂; y)φα(h)‖2y > 0 . (IV.21)

IV.2 Semiclassical upper bound on σα.

To derive the semiclassical bound (II.43), we follow the strategy used in [RT], [RW], and [Jec]. As seen
in these papers, the asymptotic behavior of the scattering cross-section depends only on the decay of the
pair potentials. In fact, the relevant parameter is the decay, in the inter-cluster variable x ∈ R3, of an
“effective potential” Π(x) IaΠ0(x), which was estimated in Lemma IV.2. As mentioned there, this potential
is related to Ia and thus to the eigenvalue λ1(x; 0). In our case this effective potential decays like 〈x〉−4

by (IV.3), and the Coulomb singularity is located at x = 0. In the framework of [RT], we set ρ = 4 and
define γ := 1/(ρ− 1) = 1/3. Notice that the potential IaΠ0 only decays as 〈x〉−2, which a priori is not even
sufficient to guarantee finiteness of the total scattering cross-section. In addition one has to be careful with
the Coulomb singularities. These two points are the real new features which we have to address. This will
be done with the help of (IV.1) and (IV.2).

As usual, any bounded neighborhood of the origin (x = 0) does not contribute to the total cross-section.
Since the potential is very small at infinity, there should be some region at infinity that does not contribute
to the main part of the total cross-section. To rigorously implement these facts, we introduce, in the spirit
of [RT], an h-dependent partition of unity in the inter-cluster configuration space R3

x. Let δ > 0 and set
η := (1 + δ)γ = (1 + δ)/3. Let

∑3
j=1 χj = 1 be this h-dependent partition of unity on R3, where, for all

1 ≤ j ≤ 3, χj ∈ C∞(R3; R), 0 ≤ χj ≤ 1, and

χ1 = 1 on {|x| < h−1/3} , χ2 = 1 on {2h−1/3 < |x| < 2h−(1+δ)/3} ,

suppχ1 ⊂ {|x| < 2h−1/3} , suppχ2 ⊂ A := {h−1/3 < |x| < 3h−(1+δ)/3} , suppχ3 ⊂ {|x| > 2h−(1+δ)/3} .
We demand further that, uniformly w.r.t. h,

∀α ∈ Nn, ∃Dα > 0; ∀j ∈ {1, 2, 3}, |∂αxχj(x)| ≤ Dα〈x〉−|α| (IV.22)

This is possible since the sets {x; χj(x) = 0} and {x; χj(x) = 1} move away from each other as h→ 0. We
shall see that the main contribution in σα is of order h−2/3. It is produced by the annulus A. Recall from
(II.30) that

σα(λ, ω;h) =
Ca(h)h−1

nα(λ;h)
=

〈
R(λ+ i0;h)Iaeα , Iaeα

〉
.



JKW, 03-04-2000 17

For convenience, we get rid of the unessential prefactor. To this end we define

σα(λ, ω;h) =:
Ca(h)h−1

nα(λ;h)
σ̃α(λ, ω;h) . (IV.23)

Now we write each factor Iaeα as
∑
j χjIaeα. As previously mentioned, one can localize the factors outside

a neighborhood of 0:

Proposition IV.3. For χ, θ ∈ C∞0 (R3; R) and λ ∈ J ,

R(λ± i0;h)χIaeα = χeα + R(λ± i0;h)[χ,−h2∆x]eα,

and

=
〈
R(λ± i0;h)χIaeα, θIaeα

〉
+ =

〈
R(λ± i0;h)θIaeα, χIaeα

〉
= =

〈
R(λ± i0;h)[χ,−h2∆x]eα, [θ,−h2∆x]eα

〉
+ =

〈
R(λ± i0;h)[θ,−h2∆x]eα, [χ,−h2∆x]eα

〉
. (IV.24)

Proof: Algebraically, one simply uses the fact that (P (h) − λ)eα(h)) = Ia(h)eα(h). Of course, one has to
verify that the resolvent R(λ ± i0;h) can be applied to the function χIaeα. But this is a consequence of
Theorem III.3 as explained in the proof of Theorem II.1 in the previous section.

This yields the following new expression for σ̃α.

σ̃α(λ, ω;h) = =
〈
R(λ+ i0;h) vα , vα

〉
(IV.25)

where vα :=
(
[χ1,−h2∆x] + (χ2 + χ3)Ia

)
eα . (IV.26)

Next we introduce the projection Π(x). On both sides of the scalar product, we write 1 = Π(x) + Π̂(x).
Since Π̂R(λ+ i0;h)Π̂ is symmetric, we see that

σ̃α = σ̃Π + σ̃Π,Π̂ + σ̃Π̂,Π, (IV.27)

where

σ̃Π̂,Π(λ, ω;h) = =
〈
Π̂R(λ+ i0;h)Π vα , vα

〉
, (IV.28)

σ̃Π,Π̂(λ, ω;h) = =
〈
ΠR(λ+ i0;h)Π̂ vα , vα

〉
, (IV.29)

σ̃Π(λ, ω;h) = =
〈
ΠR(λ+ i0;h)Π vα , vα

〉
. (IV.30)

In Lemma IV.4 below, we shall directly estimate (IV.28) and (IV.29) while we shall use the adiabatic
approximation of the resolvent to deal with (IV.30) in Lemma IV.5 .

Lemma IV.4. For all ε > 0, there exists some Cε > 0 such that, for all h > 0 sufficiently small and locally
uniformly in (λ, ω) ∈ J × S2,

|σ̃j(λ, ω;h)| ≤ Cεh
1−2/3+(1/2−ε),

for j = (Π, Π̂) and j = (Π̂,Π).

Proof: We first note that, for s > 0, there exists some c > 0, such that, for all x, y, 〈x − l(y)〉s ≤
c(〈x〉s + 〈l(y)〉s), where 〈l(y)〉s ≤ c(1 + O(h2s)|y|s). By the exponential decay of the eigenfunction φα, we
can bound ‖〈x− l(y)〉svα‖ by some constant times ‖〈x〉svα‖. For s < 1/2,

‖χ2Iaeα‖ = ‖〈x〉−s 〈x〉sχ2Iaeα‖ (IV.31)
≤ O

(
hs/3

)
‖Iaeα‖L2

s(R3(N+1)) = O
(
h1/6−ε) , (IV.32)

‖χ3Iaeα‖ ≤ O
(
h((1+δ)/3

)
‖Iaeα‖L2

s(R3(N+1)) = O
(
h(1+δ)/6−ε) , (IV.33)
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for any small ε > 0, thanks to (IV.1) and (IV.2). If the projection Π(x) is present, we deduce from (IV.3)
that, for 1/2 < s′ < s < 4− 3/2,

‖〈x〉s
′
χ2Π Iaeα‖ ≤ O

(
h(4−3/2−s)/3) ‖〈x〉−3/2−(s−s′)‖L2(R3)

= O
(
h1−(1/2+s)/3

)
, (IV.34)

‖〈x〉s
′
χ3Π Iaeα‖ ≤ O

(
h(4−3/2−s)(1+δ)/3) ‖〈x〉−3/2−(s−s′)‖L2(R3)

= O
(
h(1−(1/2+s)/3+δ(5/2−s)/3). (IV.35)

Next we write
[χ1,−h2∆x]eα = −2ihnα(λ)ω · (∇χ1)eα + h2(∆χ1)eα.

Similarly, we obtain

‖〈x〉s
′
[χ1,−h2∆x]eα‖ ≤ O

(
h1+(1−3/2−s)/3) ‖〈x〉−3/2−(s−s′)‖L2(R3) ,

= O
(
h1−(1/2+s)/3

)
. (IV.36)

Now we use the resolvent estimate (IV.9) and see that σ̃j is of order in h

1− 2/3 + 1/2− 7ε/6 .

In view of the adiabatic approximation of the resolvent, we define

σad(λ, ω;h) :=
Ca(h)h−1

nα(λ;h)
=

〈
ΠRAD(λ+ i0;h)Π vα , vα

〉
=:

Ca(h)h−1

nα(λ;h)
σ̃ad(λ, ω;h) , (IV.37)

where vα is defined in (IV.26). In fact, σad is almost the total cross-section with initial channel α for some
adiabatic system as shown in [Jec]. It thus should be a good approximation for σα. Indeed, we claim that

Lemma IV.5. For all ε > 0 small enough, there exists some Cε > 0 such that, for all h > 0 sufficiently
small and locally uniformly in (λ, ω) ∈ J × S2,

|σ̃Π(λ, ω;h)− σ̃ad(λ, ω;h)| ≤ Cεh
1−2/3+(1/2−ε).

In particular,
σα(λ, ω;h) = σad(λ, ω;h) +O(h−2/3+(1/2−ε)). (IV.38)

Proof: It suffices to use (IV.34), (IV.35), and (IV.36), together with the resolvent approximation (IV.10),
as in Lemma IV.4. Equation (IV.38 is then obvious from the definitions.

Next we want to derive a leading term for σ̃ad(λ, ω;h). To this end, we proceed in several steps. We first
isolate in the configuration space the region giving the leading contribution (the annulus A). Then we show
that the subregion where the impact parameter is small gives a negligible contribution to the scattering
cross-section. The term we are left with is transformed by the so called eikonal approximation and we obtain
some leading term, in which no resolvent is present but that depends on cut-offs. To exhibit a “proper leading
term”, which is independent of cut-offs, we reinject previous terms (which are in fact negligible). From the
physical point of view, such a leading term should be expressed in terms of the eigenvalue λ1(x), which is
the effective potential in the context of the Born-Oppenheimer approximation. Therefore we introduce:

f1 = 2inα(λ; 0)h(∇χ1) · ω and f2 = χ2(λ1 − E0) = χ2Ieff , (IV.39)

and with this notation we find
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Lemma IV.6. There exists some ε0 > 0 such that, for all 1 ≤ j, k ≤ 2, and locally uniformly on J × S2,

σ̃ad(λ, ω;h) =
2∑

j,k=1

=
〈
ΠRAD(λ+ i0;h)Πfjeα , fkeα

〉
+O

(
h1−2/3+ε0

)
.

Proof: We proceed as in Lemma IV.4 without using equation (IV.32) and (IV.33). In view of (IV.5) we get
the result (as in [Jec]).

We note that, for j ∈ {1, 2} and uniformly w.r.t. h,

suppfj ⊂ A = {h−1/3 < |x| < 3h−(1+δ)/3} (IV.40)

and |fj(x)| = O(〈x〉−4). (IV.41)

The inclusion (IV.40) is a direct consequence of the support properties of χ1 et χ2. The decay estimate
(IV.41) is obvious for f2. We check it for f1. According to the decay in x of ∇χ1 (cf. (IV.22)), which is
uniform w.r.t. h, there exists some c > 0 such that, for all x and h,∣∣∣〈x〉4f1(x)∣∣∣ ≤ 2nα(λ; 0)h

∣∣∣〈x〉31I{|x|<2h−1/3}(x)
∣∣∣ ∣∣∣〈x〉(∇χ1)(x)

∣∣∣ ≤ ch1−3·1/3 = c .

Let Hω = {x ∈ R3; x · ω = 0} be the hyperplane orthogonal to ω. For all x ∈ R3, we have a unique
decomposition of the form x = xω + (x · ω)ω, where the transversal component xω ∈ Hω is the impact
parameter. We expect that some region of small impact parameter gives a negligible contribution to the
cross-section. Thus we introduce a new partition of unity, on R2. Let θ1, θ2 ∈ C∞(R2; R) such that

θ1 + θ2 = 1 , 0 ≤ θ1, θ2 ≤ 1 ,
θ1(u) = 1 if |u| < 1 and suppθ1 ⊂ {|u| ≤ 2} .

For j, k ∈ {1, 2}, we define
fjk(x) = θj

(
h(1−2δ)/3xω

)
fk(x) . (IV.42)

Lemma IV.7. If j = 1 or l = 1, then there exists some ε0 > 0 such that, locally uniformly on J × S2,

=
〈
ΠRAD(λ+ i0;h)Π fjkeα , flmeα

〉
= O

(
h1−2/3+ε0

)
.

Proof: According to (IV.40), the volume of the support of f1k is of order in h: −(1 + δ)/3 − 2(1 − 2δ)/3.
This gives, for some h-independent, non-negative c,

‖〈x〉s
′
f1keα‖ ≤ c‖〈x〉s

′−41suppf1k
(x)‖ = O

(
h1−(1/2+s′)/3+δ/2

)
. (IV.43)

Using again (IV.8), we see that the corresponding terms have order in h

1− 2/3 + (1− 2s)/3 + δ/2 = 1− 2/3 + ε0 ,

for some ε0 > 0 as soon as s is close enough to 1/2.

Next we come to the eikonal approximation. Roughly speaking, we are looking for functions gj such that
(PAD − λ)ih−1gjeα = f2jeα. Expanding this, we expect that

2nα(λ; 0)ω · (∇xgj)eα + ih−1Ieffgjeα = f2jeα + small terms .

Thus, for j ∈ {1, 2}, we set

gj(x) =
∫ +∞

0

f2j(x− 2nα(λ; 0)tω)e−ih
−1 ∫ t

0 Ieff (x−2nα(λ;0)(t−s)ω)dsdt.

Thanks to (IV.40), the integration takes place on a compact set, where no singularity is present (Ieff is
smooth away from 0), so that each gj is well-defined and C∞. Furthermore they also have the following
properties, as one can check by an elementary computation.
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Proposition IV.8. For j ∈ {1, 2}, uniformly w.r.t. x and h, one has

suppgj ⊂
{
h−(1−2δ)/3 < |xω| < 3h−(1+δ)/3

}
, (IV.44)∣∣gj(x)∣∣ +

∣∣(∇gj)(x)∣∣ ≤ O
(
(h−1/3 + |xω|)−3

)
, (IV.45)∣∣(∇gj)(x)∣∣ = O(h4(1−2δ)/3) , (IV.46)∣∣(∆gj)(x)∣∣ = O(h8(1−2δ)/3−1) , (IV.47)

2nα(λ; 0)ω · (∇gj) + ih−1Ieffgj = f2j . (IV.48)

To control gj in the direction ω, we introduce a new cut-off χ4(x) = ζ(h(1+δ)/3x · ω), where ζ ∈ C∞0 (R; R)
verifies

ζ(t) = 1 if |t| ≤M − 1,
suppζ ⊂ {t; |t| ≤M},

for some real number M > 1. Uniformly w.r.t. x and h, we observe that∣∣∣(∇χ4)(x)
∣∣∣ ≤ ch(1+δ)/3,

∣∣∣(∆χ4)(x)
∣∣∣ ≤ ch2(1+δ)/3, (IV.49)

that χ4 = 1 on the support of f2j thanks to (IV.40) and that

suppχ4gj ⊂
{
x ∈ Rn; |x| ≤ Rh−(1+δ)/3

}
(IV.50)

for j ∈ {1, 2} and for some R > M .

Proposition IV.9. For j ∈ {1, 2}, we have the following representation

ΠRAD(λ± i0;h)Πf2jeα = ih−1Πχ4gjeα −ΠRAD(λ± i0;h)ΠrAD
j eα ,

where

rAD
j = ih−1Π[−h2∆x,Π]χ4gj + ih−1Π[−h2∆x, χ4]gj + ih−1Πχ4(−h2(∆gj))

+ih−1χ4gjΠ(Ia − Ieff)− 2ih(∇gj · ω)(nα(λ;h)− nα(λ; 0))Πeα .

Proof: The arguments of [Jec] apply.

Lemma IV.10. There exists ε0 > 0 such that, for all j, k ∈ {1, 2},〈
ΠRAD(λ± i0;h)Π rAD

j eα , f2keα
〉

= O
(
h1−2/3+ε0

)
.

locally uniformly on J × S2.

Proof: We estimate the scalar product as in the previous lemmata. The contribution of the factors con-
taining [−h2∆x, χ4], −h2(∆xgj), and nα(λ;h) − nα(λ; 0) = O(h2) respectively, can be treated as in [RT].
Thanks to (IV.5), this is also the case for the factor containing Ia − Ieff . We are left with the contribution
of ih−1Π[−h2∆x,Π]χ4gjeα, which was treated in [Jec]. We only estimate the “worse” contribution, coming
from the factor f := 2(Π(∇Π)Π0 · nα(λ;h)ω)χ4gjeα. Using (IV.7) and Proposition IV.8, we obtain, for
1/2 < s′ < s < 4− 3/2,

‖〈x〉s
′
f‖ ≤ O(h) ‖〈x〉−3/2−(s−s′) 〈xω〉−5+3/2+s1suppgj

‖ = O
(
h1−(1/2+s)/3+1/3−δφ(s)

)
,

where the function φ(s) is bounded near 1/2. Putting everything together, we see that this contribution is
negligible for δ small enough.
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Lemma IV.11. For 1 ≤ j, k ≤ 2, locally uniformly for λ ∈ J and for ω ∈ S2,〈
ih−1(Π−Π0)gjeα , f2keα

〉
= O(h1−2/3+1/3) , (IV.51)

〈
ih−1gjeα , f2keα

〉
=

〈
ih−1gj , f2k

〉
x

= O(h1−2/3) , (IV.52)

where 〈·〉x denotes the scalar product in L2(R3).

Proof: The first estimate follows directly from (IV.7) for Π0(Π−Π0)Π0 and from the previous arguments.
The second one is already contained in [RT] and its proof applies here.

We are now ready to prove the first part of Theorem II.2, i.e. the estimate (II.43). To this end we recall the
definitions (IV.37), (IV.23) and combine the estimates and representation formulae of Lemma IV.6, Lemma
IV.7, Proposition IV.9 and Lemma IV.10 to extract the leading contribution to the cross-section σad(λ, ω;h).
Using nα(λ;h) = nα(λ; 0) +O(h2), we thus can find some ε0 > 0 such that, locally uniformly for λ ∈ J and
ω ∈ S2,

σad(λ, ω;h) =
Ca(h)h−1

nα(λ; 0)

∑
1≤j,k≤2

=
〈
ih−1gj , f2k

〉
x

+O
(
h−2/3+ε0

)
. (IV.53)

Combining equation (IV.38) with Lemma IV.11 then yields the estimate (II.43).

IV.3 Leading terms.

In this subsection we complete the proof of Theorem II.2. We first show (II.44) for I = Ieff . With a similar
proof, we treat the second case. Finally, we use arguments of [Y] to prove that these leading terms are
equivalent to h−2/3, as h goes to 0. In order to exhibit a leading term that does not depend on the cut-offs,
we add as in [RT] some negligible terms to the previous leading term. Because of the singularity in the
effective potential, we shall keep the cut-off in impact parameter until the end. We define, for j = 1, 2,

g̃j(x) =
∫ +∞

0

fj(x− 2nα(λ; 0)tω)e−ih
−1 ∫ t

0 Ieff (x−2nα(λ;0)(t−s)ω)ds dt ,

Ieff2(x) = θ2

(
h−(1−2δ)/3xω

)
Ieff(x) . (IV.54)

Lemma IV.12. For 1 ≤ j, k ≤ 2, there exists ε0 > 0 such that locally uniformly w.r.t. λ ∈ J and ω ∈ S2,∑
1≤j,k≤2

=
〈
ih−1gj , f2k

〉
x

= =
〈
ih−1

(
g̃1 + g̃2

)
, Ieff2

〉
x

+ O
(
h1−2/3+ε0

)
. (IV.55)

Proof: Using the previous arguments, it is easy to show (see [RT]) that, for some ε0 > 0,∑
1≤j,k≤2

=
〈
ih−1gj , f2k

〉
x

=
∑

1≤k≤2

=
〈
ih−1

(
g̃1 + g̃2

)
, f2k

〉
x

+ =
〈
ih−1

(
g̃1 + g̃2

)
, χ3Ieff2

〉
x

+O
(
h1−2/3+ε0

)
.

Recall that f22 = χ2Ieff2. For k = 1, we obtain by partial integration,

=
〈
ih−1

(
g̃1 + g̃2

)
, f21

〉
x

= =
〈
ih−1

(
g̃1 + g̃2

)
, θ2

(
h−(1−2δ)/3xω

)
2ihnα(λ; 0)(ω · ∇χ1)

〉
x

= =
〈
ih−12ihnα(λ; 0)ω · ∇

(
g̃1 + g̃2

)
, θ2

(
h−(1−2δ)/3xω

)
χ1

〉
x
.

From Proposition IV.8, we derive

2nα(λ; 0)ω · (∇g̃j) + ih−1Ieffgj = fj .
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Thus
=

〈
ih−1

(
g̃1 + g̃2

)
, f21

〉
x

=
〈
ih−1

(
g̃1 + g̃2

)
, χ1Ieff2

〉
x
−

〈
f1 + f2 , χ1

〉
x
.

Since f2 and χ1 are real-valued, =〈f2, χ1〉x = 0. Since

0 =
∫
ω · ∇

(
χ2

1

)
dx = 2

∫
χ1 ω · (∇χ1) dx ,

=
〈
ih−1

(
g̃1 + g̃2

)
, f21

〉
x

=
〈
ih−1

(
g̃1 + g̃2

)
, χ1Ieff2

〉
x
.

Let, for |xω| > 1,

g∗(x) =
∫ +∞

0

Ieff(x− 2nα(λ; 0)tω)e−ih
−1 ∫ t

0 Ieff (x−2nα(λ;0)(t−s)ω)dsdt .

Lemma IV.13. There exists ε0 > 0 such that, locally uniformly w.r.t. λ ∈ J and ω ∈ S2,

=
〈
ih−1

(
g̃1 + g̃2

)
, Ieff2

〉
x

= =
〈
ih−1g∗ , Ieff2

〉
x

+ O
(
h1−2/3+ε0

)
. (IV.56)

Proof: Since in view of (IV.54) the scalar products are localized away from 0, the arguments of [RT] apply.

We are left with the computation of =
〈
ih−1g∗, Ieff2

〉
x
. Using (IV.48) and Ieff being real valued, we obtain

=
〈
ih−1g∗ , Ieff2

〉
x

= −=
∫

2nα(λ; 0)ω · ∇g∗θ2
(
h−(1−2δ)/3xω

)
dx.

As in [RT], we observe that, for x = xω + sω,

−2nα(λ; 0)ω · ∇g∗(x) = −Ieff(xω + sω)e−
i

2nα(λ;0)h

∫ s
−∞ Ieff (xω+uω)du.

Since θ2 only depends on xω, we obtain as in [RT]

=
〈
ih−1g∗, Ieff2

〉
x

= 4nα(λ; 0)h
∫
Hω

θ2

(
h−(1−2δ)/3xω

)
sin2

(
1

4nα(λ; 0)h

∫ +∞

−∞
Ieff(xω + uω)du

)
dxω.

(IV.57)
Since the function

xω 7→ sin2

(
1

4nα(λ; 0)h

∫ +∞

−∞
Ieff(xω + uω)du

)
is essentially bounded and since θ1 has compact support, (IV.57) with θ2 replaced by θ1 makes sense and is
of order h1−2(1−2δ)/3, which is O(h1−2/3+ε0) for some ε0 > 0 since δ > 0. From (IV.53), we thus obtain

σad(λ, ω;h) = 4Ca(h)
∫
Hω

sin2

(
1

4nα(λ; 0)h

∫ +∞

−∞
Ieff(xω + uω)du

)
dxω + O

(
h−2/3+ε0

)
, (IV.58)

which is (II.44) for I = Ieff .

Since the potential Îeff has the same properties as Ieff (see Proposition IV.1), we can follow the proof in
Subsection IV.2 and the previous proof with Ieff replaced by Îeff . We thus obtain the formula (IV.58) with
Îeff , which is (II.44) for I = Îeff .

Now we assume that C2 + Z2 6= 0. To show that σad (and thus σα) is exactly of order h−2/3, we estimate
as in [Jec] the integral in (II.44) for I = Îeff . Recall that Îeff(x) is of the form A(x̂; 0)|x|−4 (see (II.41)) and
that A(x̂; 0) is everywhere negative by Lemma IV.2 since C2 + Z2 6= 0. Thanks to this form, one can show
as in [Y] that, for some h-independent constant b 6= 0,

4Ca(h)
∫
Hω

sin2

(
1

4nα(λ; 0)h

∫ +∞

−∞
Îeff(xω + uω)du

)
dxω = bCa(h)h−2/3

∫
S1

ω

∣∣Ω(ω, τ)
∣∣2/3 dτ , (IV.59)
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where S1
ω is the unit sphere in Hω and where Ω is given by

Ω(ω, τ) =
∫ π

0

Îeff(cos θ ω + sin θ τ) sin2 θ dθ (IV.60)

for τ ∈ S1
ω. By Lemma IV.2 we know that the integrand - and thus Ω - is negative everywhere. Thus the

rhs of (IV.59) is exactly of order h−2/3 since Ca(h) + Ca(h)−1 = O(1) by (B.3).

We have proved that, if if C2 + Z2 6= 0, σad is exactly of order h−2/3 and, thus, so is the integral in (IV.58)
with Ieff . This completes the proof of Theorem II.2

A Agmon’s geometrical formalism

In this section, we present a geometrical formalism, due to Agmon (see [A]), for the scattering theory of
many-body Hamiltonians. We apply it to obtain intrinsic formulae which allow to calculate in a systematic
fashion various normalization factors which arise by specializing to certain arbitrary choices of coordinates.

Recall that we consider N +2 particles, two nuclei, labeled by 1, 2 and with masses m1,m2, and N electrons
with mass mj = 1, j ≥ 3. On the Euclidean spaces R3(N+2) and R3, and on their dual spaces, we denote by
| · | (resp. (·, ·)) the usual norm (resp. scalar product), while the duality is denoted by ξ · r, for r ∈ R3(N+2)

(resp. r ∈ R3) and ξ in the dual space.

The main idea in Agmon’s geometrical formalism is to interpret the Laplacian −∆c and −∆c in the inter-
cluster and intra-cluster variables as Laplace-Beltrami operators on the spaces Xc and Xc which we shall
introduce below. To this end, we consider a mass-dependent quadratic form q̃ on R3(N+2) given by

q̃(x1, . . . , xN+2) := 2m1|x1|2 + 2m2|x2|2 +
N+2∑
j=3

2|xj |2

On the dual space, we denote by q̃∗ the dual quadratic form defined by

q̃∗(ξ1, . . . , ξN+2) :=
1

2m1
|ξ1|2 +

1
2m2

|ξ2|2 +
1
2

N+2∑
j=3

|ξj |2 .

The restriction of q̃ to the subspace

X :=
{
(x1, · · · , xN+2) ∈ R3(N+2); m1x1 +m2x2 +

N+2∑
j=3

xj = 0
}

(A.1)

is called q. We decompose R3(N+2) = X ⊕X⊥, where the orthogonal complement X⊥ of X w.r.t. q̃ is

X⊥ =
{
(x1, · · · , xN+2) ∈ R3(N+2); ∀k, j ∈ {1, . . . , N + 2}, xk = xj

}
. (A.2)

Let A be the set of all cluster decompositions (i.e. partitions) of {1, · · · , N +2}. For each c = (c1, . . . , cm) ∈
A, let ]c := m denote the number of clusters. We introduce two subspaces Xc and Xc of X, which satisfy
X = Xc ⊕Xc and Xc = (Xc)⊥ w.r.t. q. More precisely, we define

Xc :=
{
(xj)1≤j≤N+2 ∈ X; ∀k ∈ {1, . . . , ]c},

∑
j∈ck

mjxj = 0
}

(A.3)

and
Xc :=

{
(xj)1≤j≤N+2 ∈ X; ∀k ∈ {1, . . . , ]c}, (j, l ∈ ck =⇒ xj = xl)

}
, (A.4)
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We denote by πcr (resp. πcr) the orthogonal projection of r ∈ X onto Xc (resp. Xc). Furthermore, we
introduce a partial ordering ⊂ on A, defined by

c ⊂ d ⇐⇒ Xc ⊂ Xd ⇐⇒ Xc ⊂ Xd

⇐⇒ ∀j ∈ {1, . . . , ]c}, ∀k ∈ {1, . . . , ]d}, (cj ∩ dk 6= ∅ =⇒ cj ⊂ dk).

Thus c ⊂ d means that the clusters of c are obtained by splitting the clusters of d.
For j 6= l, let d = (jl) be the cluster decomposition, where all clusters are singletons with the exception of
one cluster consisting of the particles j and l. Then we have, for r = (xj)1≤j≤N+2 ∈ X,

πdr =
(
0, . . . , 0, ml

ml+mj
(xl − xj), 0, . . . , 0, −mj

ml+mj
(xl − xj), 0, . . . , 0

)
∈ Xd

| |
jth entry lth entry

.

In particular, the interaction terms in the Hamiltonian Pphys only depend on πdr, the projection of r ∈ X
onto Xd, for d ∈ A. Now, we can rewrite the Hamiltonian Pphys, given by (II.1), with the appropriate
definition of the potentials Vc, as

Pphys = −∆X⊥ −∆X +
∑
c∈A

Vc(πcr),

where −∆X (resp. −∆X⊥) is the Laplace-Beltrami operator of X (resp. X⊥) w.r.t. the metric generated
by q (resp. q̃). We remark that in the case of our physical Hamiltonian all potentials are pair potentials, i.e.
Vc = 0 except for clusters c of the form c = (jl). Removing the center of mass motion, we obtain

P = −∆X +
∑
c∈A

Vc(πcr). (A.5)

The operator P naturally acts in L2(X, dµX), where dµX is the measure in X induced from the Lebesgue
measure in R3(N+2) w.r.t. the standard Euclidean norm | · |2. Denoting by −∆c (resp. −∆c) the Laplace-
Beltrami operator of Xc (resp. Xc) w.r.t. the metric generated by the restriction qc (resp. qc) of q to Xc

(resp. Xc), we set, for all c ∈ A,

Pc = −∆c +
∑
d⊂c

Vd(rd), Pc = −∆c + Pc, Ic(r) =
∑
d6⊂c

Vd(rd). (A.6)

Then we have P = Pc + Ic(r). In the same way, for Dx = −i∂x acting in L2(R3(N+2); dx), we write
Dx = D⊥ ⊗ 1 + 1⊗DX , where DX (resp. D⊥) acts in L2(X) (resp. L2(X⊥)). Moreover,

DX = Dc ⊗ 1 + 1⊗Dc, (A.7)

where Dc (resp. Dc) acts in L2(Xc) (resp. L2(Xc)).

As usual in many-body scattering theory, we introduce a suitable Fourier transform to “diagonalize” Pc
restricted to an eigenspace of Pc corresponding to a discrete eigenvalue. Let γ = (c, Eγ , φγ) be a channel
with cluster decomposition c, discrete eigenvalue Eγ , and normalized eigenfunction φγ . For λ ≥ Eγ , we
set as usual nγ(λ) := (λ − Eγ)1/2. Let q∗c be the restriction of q̃∗ to X∗

c and let Sq∗c (X∗
c ) be the unit

sphere of X∗
c w.r.t. the metric induced by q∗c . In particular, if ωc belongs to the sphere Sq∗c (X∗

c ), then
q∗c (nγ(λ)ωc) = λ− Eγ . Equivalently, the function

Xc 3 xc 7→ einγ(λ)ωc·xc (A.8)

is a generalized eigenfunction of −∆c with eigenvalue λ− Eγ , that is

−∆c e
inγ(λ)ωc·xc = (λ− Eγ) einγ(λ)ωc·xc . (A.9)
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Considering the Lebesgue measure dξc on X∗
c (induced by the standard Euclidean norm | · | in X), we equip

Sq∗c (X∗
c ) with a measure dθc such that

∀f ∈ L1(X∗
c ),

∫
X∗c

f(ξc) dξc =
∫ +∞

0

rnc−1 dr

∫
Sq∗c (X∗c )

f(rθc) dθc , (A.10)

where nc = dimX∗
c = dimXc. For each channel γ = (c, Eγ , φγ), we define an isometry

Fγ : L2(Xc) −→ Hγ := L2
(
]Eγ ; +∞[;L2

(
Sq∗c (X∗

c )
))

by
(
Fγf

)
(λ, θc) = Dγ(λ)

∫
Xc

e−inγ(λ)θc·xcf(xc) dxc , (A.11)

where dxc is the Lebesgue measure on Xc (induced by the standard Euclidean norm | · | in X) and

Dγ(λ) =
1√
2
(2π)−nc/2

(
nγ(λ)

)(nc−2)/2
. (A.12)

A direct calculation shows that FγPcF ∗γ is multiplication by λ in the space Hγ . Furthermore, the operators

Fγ(λ) : L2
s(Xc) −→ L2

(
Sq∗c (X∗

c )
)(

Fγ(λ)f
)
(θc) =

(
Fγf

)
(λ, θc) , (A.13)

where L2
s(Xc) := L2(Xc, 〈xc〉s dxc), are bounded for any s > 1/2. We introduce the identification operators

Jγ : L2(Xc) −→ L2(X) (A.14)
f 7→ f(πcr)φγ(πcr)

To define the total scattering cross-section, we introduce a superposition of plane waves of type (A.8), which
will be the input of the scattering process. Recall that | · | refers to the standard, mass-independent norm
on X∗

c . A straightforward calculation shows that

q∗c = h2| · | on X∗
c (A.15)

For ωc ∈ Sq∗c (X∗
c ), we define (using (A.15))

gωc
:=

|ωc|1/2

2
√
π

∫
R
einγ(λ)ωc·xc

g(λ)
nγ(λ)1/2

dλ , |ωc| = h−1, (A.16)

where the normalization factor is chosen such that

‖gωc
‖L2(Rωc) = ‖g‖L2(R), (A.17)

where the Lebesgue measures is used on Rωc and R. Since gωc does not decay in the direction orthogonal to
ωc, we introduce the regularizing function hR,ωc

, which only depends on the transversal variable xc−(ωc·xc)ωc
and satisfies pointwisely

lim
R→∞

hR,ωc
= 1 . (A.18)

Definition A.1. Let γ, δ be two channels associated with the cluster decompositions c, d respectively. Let
ωc ∈ Sq∗c (X∗

c ) and let I be an open subset of ]Eγ ; +∞[. If

τδγ(g) := lim
R→∞

‖TδγhR,ωc
gωc

φγ‖2 (A.19)

defines a continuous quadratic form on C∞0 (I; C), then the total scattering cross-section σδγ(·, ωc), from the
channel γ to the channel δ, with incident direction ωc, exists in I and is the antilinear continuous map given
by

σδγ : C∞0 (I; C) −→ D′(I; C)
g 7→ Bδγ(g, ·)
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where Bδγ(·, ·) is the sesquilinear map associated to τδγ . In this case, denoting by 〈·, ·〉′ the duality between
D′ and C∞0 , we have

∀g ∈ C∞0 (I; C), 〈σδγ(g), g〉′ = τδγ(g). (A.20)

Analogously, we define the total scattering cross-section σγ(·, ωc) in the channel γ, with incident direction
ωc, by replacing (A.19) by

τγ(g) := lim
R→∞

∑
δ∈C

‖TδγhR,ωc
gωc

φγ‖2 . (A.21)

B Using coordinates

To derive the semiclassical asymptotics of σα, we shall use the coordinates (x, y) ∈ R3 × R3N , introduced
in (II.3) and (II.4) and adapted to the two-decomposition a = (a1, a2). In this section, we shall express all
objects needed in our paper in terms of the clustered atomic coordinates (x, y). In particular, we derive the
dependence on the semiclassical parameter h, defined in (II.2).
First of all, we parametrize Xa by r = ua(x), where the components of r ∈ Xa ⊂ R3(N+2) are given by{

M2
M x if j ∈ a1,

−M1
M x if j ∈ a2,

(B.1)

and where M = M1 +M2 denotes the total mass of the molecule. We parametrize Xa by r = ua(y), where
the components of r ∈ Xa ⊂ R3(N+2) satisfy

− 1
M1

∑
l∈a′1

yl if j = 1,

− 1
M2

∑
l∈a′2

yl if j = 2,

yj − 1
Mk

∑
l∈a′k

yl if j ∈ a′k, k ∈ {1, 2} .

Then u := ua + ua : R3
x × R3N

y → X ⊂ R3(N+2) parametrizes the center of mass subspace X. To express a
scalar product in L2(X, dµX) as a scalar product in L2(R3

x × R3N
y , dx dy), we need the transformation rule

dµX =
√

det(gij)dx dy, gij := (du ei, du ej)R3(N+2) , (B.2)

where {ei} denotes the standard basis of R3(N+1)
x,y . A straightforward calculation then shows that

Ca(h) :=
√

det(gij) satisfies C ≤ Ca(h) ≤ C−1, (B.3)

for some constant C > 0, uniformly w.r.t. 0 ≤ h ≤ h0. For this particular choice of coordinates, the operators
P, Pa, Pa, and Ia are given by (II.6), (II.7), and (II.8) respectively. To emphasize the h-dependence of Eα and
nα(λ), we shall now write Eα(h) and nα(λ;h) respectively. We remark that the pull-back of the quadratic
form q∗a, the kinetic energy associated with the relative motion of the 2 clusters, to the coordinate space
(R3

x)
∗ satisfies

q∗a ◦ (u∗a)
−1 = h2| · |2R3

x
. (B.4)

This is just a rephrasing of the concept of reduced mass and relies really on the same calculation which
gives −h2∆x for the operator of the kinetic energy in equation (II.6). Thus ωa ∈ Sq∗a(X∗

a) satisfies ωa =
(u∗a)

−1(h−1ω), for some vector ω in the usual unit sphere S of R3. Thus, the wave packet gωa
, introduced in

(A.16), will be denoted and given by

R3 3 x 7→ gω(x) =
1

2
√
πh

∫
R
einγ(λ;h)h−1ω·x g(λ)

nγ(λ;h)1/2
dλ, (B.5)

in the coordinates (x, y).
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The isometry (A.11), for γ = α, is now viewed as

Fα : L2(R3) −→ L2
(
]Eα(h);+∞[;L2(S2)

)
(
Fαf

)
(λ, θ) = Dα(λ;h)h−3/2

∫
R3
e−ih

−1nα(λ;h)θ·xf(x) dx , (B.6)

where
Dα(λ;h) =

1√
2
(2π)−3/2

(
nα(λ;h)

)1/2
. (B.7)

Finally, we express σα in terms of the coordinates (x, y). In view of (A.21) and (B.3), σα(·, ω) is defined by∫
R
σα(λ, ω)|g(λ)|2 dλ = Ca(h) lim

R→∞

∑
δ∈C

‖TδαhR,ωgωφα‖2L2(R3(N+1)) , (B.8)

for all g ∈ C∞0 (]Eα(h);+∞[; C).

C Expansion of the potentials

In this section we collect the relevant expansions of the Coulomb interactions for atom-ion scattering, which
involve the effective dipole moments and quadrupole moments of the two clusters a1, a2. They are certainly
well known in the physics literature. For the sake of the reader, we state them as

Lemma C.1. Let α = (a,Eα(h), φα(h)) be a scattering channel satisfying Hypothesis 1. Then

‖Ia(x, h)φα(h)‖y = O(〈x〉−2), (C.1)∥∥∥∥(
Ia −

C(x̂, ·)
|x|2

)
φα(h)

∥∥∥∥
y

= O(〈x〉−3), C(x̂, y) =
(
C2 + Z2

) ∑
l∈a′1

elx̂ · yl, (C.2)

〈φα(h), Ia(x;h)φα(h)〉y = O(〈x〉−3), (C.3)

uniformly w.r.t. h, for 0 ≤ h ≤ h0. Assuming in addition that α satisfies Hypothesis 2, we even have the
stronger estimate

〈φα(h), Ia(x;h)φα(h)〉y = O(〈x〉−5), (C.4)

uniformly w.r.t. h, for 0 ≤ h ≤ h0.

Proof: Because of the Coulomb singularities, we separate the contribution of collisions. Let Γ be the set of
all possible collisions, that is

Γ :=
{

(x, y) ∈ R3(N+1) ; ∃l ∈ a′1 ,∃j ∈ a′2 ,
x = −yl + l(y) or x = yj − yl + l(y)
or x = l(y) or x = yj + l(y)

}
. (C.5)

Let χ ∈ C∞(R3(N+1)) such that 0 ≤ χ ≤ 1, χ equals 1 on a small conic neighborhood of Γ, and χ equals
0 outside a slightly bigger conic neighborhood. We also demand that χ satisfies (II.28). Thanks to the
exponential decay (uniformly w.r.t. h) of the eigenfunctions φα(h), we have

‖χ(x, y;h)〈y〉LIa(x;h)φα(h)‖y = O(〈x〉−M ), ∀L,M ∈ N. (C.6)

Thus, we only have to estimate the contribution of the regular part

Ireg(φ) := 〈φα(h), Ĩa(x;h)φα(h)〉y, Ĩa(x;h) := (1− χ(x, y;h))Ia(x;h). (C.7)

According to (II.8), we want to expand terms of the form

|x+ l̃(y)|−1 = |x|−1 ·
∣∣x̂+ l̃(y)/|x|

∣∣−1



JKW, 03-04-2000 28

for large |x|. To this end, we use a Taylor expansion at zero of the function f : R 3 r 7→ |u + rv|−1 for
non-zero vectors u, v ∈ R3. More precisely, one obtains by Taylor expansion, that for each r ∈ R, there
exists some θ ∈]0; 1[ such that

f(r) =
3∑
k=0

rk

k!
f (k)(0) +

r4

4!
f (k)(θr) (C.8)

We observe that the first order term (the term in |x|−1) of the expansion of Ireg(φ) vanishes by neutrality of
a1 (cf. (II.22)). The second order term is given by

−
〈
φα(h) , C(x̂, ·)φα(h)

〉
y
· |x|−2, C(x̂, y) = (C2 + Z2)

∑
l∈a′1

elx̂ · yl, (C.9)

,

where C2 =
∑
l∈a′2

el is the electronic charge of a2 and where we have used an estimate similar to(C.6) to
get

‖χ(x, y;h)φα(h)C(x̂, ·)φα(h)‖y = O(〈x〉−M ), ∀M ∈ N.

Using (II.28), we see that the second order term also vanishes. The rest of the expansion is seen to be
O(|x|−3), uniformly w.r.t. h. In view of equation (C.6), this proves (C.2) and (C.3). The proof of (C.1)
is similar and involves a non-vanishing term of second order. Next we shall prove the estimate (C.4). It
crucially depends on the full rotational symmetry of the wave function φα = φα,1φα,2 in both clusters (which
is a consequence of Hypothesis 2). For convenience, we choose the cut-off χ in such a way that the new
cut-off also has the same symmetry properties. To this end, we consider Γ̃, defined as the union of the orbits
under the action (II.26) of O(3,R) on the y-variables of each point in Γ (for h = 0). As before, we construct
a cut-off χ̃ ∈ C∞(R3(N+1)) such that 0 ≤ χ̃ ≤ 1, χ̃ equals 1 on a small conic neighborhood of Γ̃, and χ̃ equals
0 outside a slightly bigger conic neighborhood. Notice that, on the support of χ̃, the previous properties are
preserved since |x| and |y| are equivalent there. Thus (C.6) holds in this case also, and it again suffices to
estimate the regular part defined in (C.7). Obviously, the first and second order term of the expansion are
zero. Expanding further, we find that the third order term is〈

φα(h) , F3(x̂, y)φα(h)
〉
· |x|−3 , (C.10)

where we have estimated the contribution of the region cut out by χ̃ as above and where

F3(x̂, y) = −(C2 + Z2)
∑
l∈a′1

(
el|yl|2 − 3(yl · x̂)2

)
+ 2

∑
l∈a′1,j∈a′2

elej (yl · yj − 3(yl · x̂)(yj · x̂)) . (C.11)

Using (II.26), we can replace in (C.10) x̂ by the canonical basis vectors b1, b2, b3 of R3. Since
∑
k F3(bk, y) = 0,

it follows that the third order term also vanishes. For the fourth order term, we get〈
φα(h) , F4(x̂, y)φα(h)

〉
· |x|−4 , (C.12)

where the function F4 satisfies

F4(x̂, y1,−y2) = −F4(x̂, y1, y2), y = (y1, y2),

since it is homogeneous of degree 3 in y. By Hypothesis 2 the eigenvalue Eα,2 is simple and φα,2 is invariant
under the reflection y2 7→ −y2. Thus the fourth order term is zero, and a standard application of Taylor’s
theorem (C.8) shows that the remainder of the expansion is O(|x|−5), uniformly w.r.t. h.
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