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Abstract. Making use of the localised Putnam theory developed in [GJ1],

we show the limiting absorption principle for Schrödinger operators with per-

turbed oscillating potential on appropriate energy intervals. We focus on a
certain class of oscillating potentials (larger than the one in [GJ2]) that was

already studied in [BD, DMR, DR1, DR2, MU, ReT1, ReT2]. Allowing long-

range and short-range components and local singularities in the perturbation,
we improve known results. A subclass of the considered potentials actually

cannot be treated by the Mourre commutator method with the generator of

dilations as conjugate operator. Inspired by [FH], we also show, in some cases,
the absence of positive eigenvalues for our Schrödinger operators.
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1. Introduction.

In this paper, we are interested in the behaviour near the positive real axis of the
resolvent of a class of continuous Schrödinger operators. We shall prove a so called
“limiting absorption principle”, a very useful result to develop the scattering theory
associated to those Schrödinger operators. It also gives information on the nature
of their essential spectrum, as a byproduct. The main interest of our study relies
on the fact that we include some oscillating contribution in the potential of our
Schrödinger operators.

To set up our framework and precisely formulate our results, we need to introduce
some notation. Let d ∈ N∗. We denote by 〈·, ·〉 and ‖ · ‖ the right linear scalar
product and the norm in L2(Rd), the space of squared integrable, complex functions
on Rd. We also denote by ‖ · ‖ the norm of bounded operators on L2(Rd). Writing
x = (x1; · · · ;xd) the variable in Rd, we set

〈x〉 :=

(
1 +

d∑
j=1

x2
j

)1/2

.

Let Qj the multiplication operator in L2(Rd) by xj and Pj the self-adjoint realiza-
tion of −i∂xj in L2(Rd). We set Q = (Q1; · · · ;Qd)

T and P = (P1; · · · ;Pd)
T , where

T denotes the transposition. Let

H0 = |P |2 :=

d∑
j=1

P 2
j = PT · P

be the self-adjoint realization of the nonnegative Laplace operator −∆ in L2(Rd).
We consider the Schrödinger operator H = H0 + V (Q), where V (Q) is the multi-
plication operator by a real valued function V on Rd satisfying the following

Assumption 1.1. Let α, β ∈]0; +∞[. Let ρsr, ρlr, ρ
′
lr ∈]0; 1]. Let v ∈ C1(Rd;Rd)

with bounded derivative. Let κ ∈ C∞c (R;R) with κ = 1 on [−1; 1] and 0 ≤ κ ≤ 1.

We consider functions Vsr, Ṽsr, Vlr, Vc,Wαβ : Rd −→ R such that Vc is com-
pactly supported and Vc(Q) is H0-compact, such that the functions 〈x〉1+ρsrVsr(x),

〈x〉1+ρsr Ṽsr(x), 〈x〉ρlrVlr(x) and the distributions 〈x〉ρ′lrx · ∇Vlr(x) and 〈x〉ρsr (v ·
∇Ṽsr)(x) are bounded, and

(1.1) Wαβ(x) = w
(
1− κ(|x|)

)
|x|−β sin(k|x|α)

with real w. Let V = Vsr + v · ∇Ṽsr + Vlr + Vc +Wαβ.

Under Assumption 1.1, V (Q) is H0-compact. Therefore H is self-adjoint on the
domain D(H0) of H0, which is the Sobolev space H2(Rd) of L2(Rd)-functions such
that their distributional derivative up to second order belong to L2(Rd). By Weyl’s
theorem, the essential spectrum of H is given by the spectrum of H0, namely
[0; +∞[. Let A be the self-adjoint realization of the operator (P ·Q + Q · P )/2 in
L2(Rd). By the Mourre commutator method with A as conjugate operator, one has
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the following Theorem , which is a consequence of the much more general Theorem
7.6.8 in [ABG]:

Theorem 1.2. [ABG]. Consider the above operator H with w = 0 (i.e. without
the oscillating part of the potential). Then the point spectrum of H is locally finite
in ]0; +∞[. Furthermore, for any s > 1/2 and any compact interval I ⊂]0; +∞[,
that does not intersect the point spectrum of H,

(1.2) sup
<z∈I,
=z 6=0

∥∥〈A〉−s(H − z)−1〈A〉−s
∥∥ < +∞ .

Remark 1.3. In [Co, CG], a certain class of potentials that can be written as the
divergence of a short range potential (i.e. a potential like Vsr) were studied. The-
orem 1.2 covers this case.
We point out that the short range conditions (on Vsr and Ṽsr) can be relaxed to
reduce to a Agmon-Hörmander type condition (see Theorem 7.6.10 [ABG] and The-
orem 2.14 in [GM]). “Strongly singular” terms (more singular than our Vc) are also
considered in Section 3 in [GM].

Remark 1.4. When w = 0, H has a good enough regularity w.r.t. A (see Section 3
and Appendix B for details) thus the Mourre theory based on A can be applied to
get Theorem 1.2. But it actually gives more, not only the existence of the boundary
values of the resolvent of H (which is implied by (1.2)) but also some Hölder
continuity of these boundary values. It is well-known that all this implies that the
same holds true when the weight 〈A〉−s are replaced by 〈Q〉−s (see Remark 1.12
below for a sketch).
Still for w = 0, under some assumption on the form [Vc, A] (roughly (8.1) below),
it follows from [FH, FHHH1] that H has no positive eigenvalue.

Now, we turn on the oscillating part Wαβ of the potential and ask ourselves, which
result from the above ones is preserved. To formulate our first main result, we shall
need the following

Assumption 1.5. Let α, β > 0 and set βlr = min(β; ρlr). Unless |α− 1|+ β > 1,
we take α ≥ 1 and we take β and ρlr such that β+βlr > 1 or, equivalently, β > 1/2
and ρlr > 1− β. We consider a compact interval I such that I ⊂]0; k2/4[, if α = 1
and β ∈]1/2; 1], else such that I ⊂]0; +∞[.

Remark 1.6. If β > 1, Wαβ can be considered as short range potential like Vsr. If
α < β ≤ 1, Wαβ satisfies the long range condition required on Vlr. If α+β > 2 and

β ≤ 1 then, for ε = α+β−2, for some short range potentials V̂sr V̌sr (i.e. satisfying
the same requirement as Vsr), for some κ̃ ∈ C∞c (R;R) with κ̃ = 1 on [−1/2; 1/2]
and with support in [−1; 1], and for x ∈ Rd,

(1.3) w
(
1− κ̃(|x|)

)
|x|−1x · ∇V̌sr(x) = kαWαβ(x) + V̂sr(x) ,

where V̌sr(x) = −(1− κ(|x|))|x|−1−ε cos(k|x|α). In all cases, Theorem 1.2 applies.

Remark 1.7. Our assumptions allow V to contain the function x 7→ |x|−β sin(k|x|α)
with β < 2 + α. This function was considered in [BD, DMR, DR1, DR2, ReT1,
ReT2].
Assumption 1.5 excludes the situation where 0 < β ≤ α < 1. A reason for this is
given just after Proposition 2.1 in Section 2.
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It turns out that our results do not change if one replaces the sinus function in Wαβ

by a cosinus function.

Let Π be the orthogonal projection onto the pure point spectral subspace of H.
We set Π⊥ = 1 − Π. For any complex number z ∈ C, we denote by <z (resp.
=z) its real (resp. imaginary) part. Our first main result is the following limiting
absorption principle (LAP).

Theorem 1.8. Suppose Assumptions 1.1 and 1.5 are satisfied. For any s > 1/2,

(1.4) sup
<z∈I,
=z 6=0

∥∥〈Q〉−s(H − z)−1Π⊥〈Q〉−s
∥∥ < +∞ .

Remark 1.9. In the litterature, the LAP is often proved away from the point spec-
trum, as in Theorem 1.2. If I in (1.4) does not intersect the latter, one can remove
Π⊥ in (1.4) and therefore get the usual LAP. But the LAP (1.4) gives information
on the absolutely continuous subspace of H near possible embedded eigenvalues.
When |α−1|+β > 1 and I does not intersect the point spectrum of H, the Mourre
theory gives a stronger result than Theorem 1.8 (cf. Theorem 1.2 and Remark 1.4).

Historically, LAPs for Schrödinger operators were first obtained by pertubation,
starting from the LAP for the Laplacian H0. Lavine initiated nonnegative commu-
tator methods in [La1, La2] by adapting Putnam’s idea (see [CFKS] p. 60). Mourre
introduced 1980 in [Mo] a powerful, non pertubative, local commutator method,
nowadays called “Mourre commutator theory” (see [ABG, GGé, GGM, JMP, Sa]).
Nevertheless it cannot be applied to potentials that contain some kind of oscillaroty
term (cf. [GJ2]). In [Co, CG], the LAP was proved pertubatively for a class of os-
cillatory potentials. This result now follows from Mourre theory (cf. Remark 1.3).
In [BD, DMR, DR1, DR2, ReT1, ReT2], the present situation with Vc = 0 and a
radial long range contribution Vlr was treated using tools of ordinary differential
equations and again a pertubative argument. Theorem 1.8 improves the results of
these papers in two ways. First, we allow a long range (non radial) part in the po-
tential. Second, the set V of values of (α;β), for which the LAP (on some interval)
holds true, is here larger. However, in the case α = 1, these old results provide
a LAP also beyond k2/4 in all dimension d, whereas we are able to do so only in
dimension d = 1. For α = β = 1, the LAP at high enough energy was proved in
[MU]. Another proof of this result is sketched in Remark 1.11 below.
We point out that the discrete version of the present situation is treated in [Man].
We also signal that the LAP for continuous Schrödinger operators is studied in
[Mar] by Mourre commutator theory but with new conjugate operators, including
the one used in [N]. We also emphasize an alternative approach to the LAP based
on the density of states. It seems however that general long range pertubations are
not treated yet. We refer to [Ben] for details on this approach.

In Fig. 1, we drew the set V in a (α;β)-plane. It is the union of the blue and green
regions. The papers [BD, DMR, DR1, DR2, ReT1, ReT2] etablished the LAP in
the region above the red and black lines and, along the vertical green line, above
the point A = (1; 2/3). According to Remark 1.6, Theorem 1.2 shows the LAP in
the blue region (above the red lines and the blue one). Both results are obtained
without energy restriction. Theorem 1.8 covers the blue and green regions (the set
V), with a energy restriction on the vertical green line. In [GJ2], the LAP with
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Figure 1. LAP. V = blue ∪ green.

energy restriction is proved at the point B = (1; 1). In the red region (below the
red lines), the LAP is still an open question.

Recall that A is the self-adjoint realization of the operator (P · Q + Q · P )/2 in
L2(Rd). We are able to get the following improvement of a main result in [GJ2].

Theorem 1.10. Let α = β = 1. Under Assumption 1.1 with Ṽsr = Vc = 0, take a
compact interval I ⊂]0; k2/4[. Then, for any s > 1/2,

(1.5) sup
<z∈I,
=z 6=0

∥∥〈A〉−s(H − z)−1Π⊥〈A〉−s
∥∥ < +∞ .

Proof. In [GJ2], it was further assumed that, for any µ ∈ I, Ker(H − µ) ⊂ D(A).
Thanks to Corollary 5.2, this assumption is superfluous. �

Remark 1.11. Note that Assumption 1.5 is satisfied for α = β = 1. In dimension
d = 1, the above result is still true if I ⊂]k2/4; +∞[. A careful inspection of the
proof in [GJ2] shows that Theorem 1.10 holds true in all dimensions if I ⊂]a; +∞[,
for large enough positive a (depending on |w|). If |w| is small enough, the mentioned
proof is even valid on any compact interval I ⊂]0; +∞[.

For nonzero potentials Vc and Ṽsr, we believe that one can adapt the proof in [GJ2]
of Theorem 1.10.

Remark 1.12. It is well known that (1.5) implies (1.4). Let us sketch this briefly. It
suffices to restrict s to ]1/2; 1[. Take θ ∈ C∞c (R;R) such that θ = 1 near I. Then,
the bound (1.4) is valid if (H − z)−1 is replaced by (1 − θ(H))(H − z)−1. The
boundedness of the contribution of θ(H)(H− z)−1 to the l.h.s of (1.4) follows from
(1.5) and from the boundedness of 〈Q〉−sθ(H)〈A〉s. To see the last property, one
can write

〈Q〉−sθ(H)〈A〉s = 〈Q〉−sθ(H)〈P 〉s〈Q〉s · 〈Q〉−s〈P 〉−s〈A〉s .
The last factor is bounded by Lemma C.1 in [GJ2]. The boundedness of the other
one is granted by the regularity of H w.r.t. 〈Q〉 (see Section 3) and the fact that
θ(H)〈P 〉 is bounded.
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Remark 1.13. It is well known that (1.4) implies the absence of singular continuous
spectrum in I (see [RS4]). On this subject, we refer to [K, Rem] for more general
results.

In Section 3, we show that the Mourre commutator method, with the generator A
of dilations as conjugate operator, cannot be applied to recover Theorem 1.8 in his
full range of validity V, neither the classical theory with C1,1 regularity (cf. [ABG]),
nor the improved one with “local” C1+0 regularity (cf. [Sa]). Indeed the required
regularity w.r.t. A is not valid on V. As pointed out in [GJ2], Theorem 1.10 cannot
be proved with these Mourre theories for the same reason. We expect that the use
of known, alternative conjugate operators (cf. [ABG, N, Mar]) does not cure this
regularity problem. However, according to a new version of the paper [Mar], one
would be able to apply the Mourre theory in a larger region than the blue region
mentioned above, this region still being smaller than V (cf. Section 3).

The given proof of Theorem 1.10 relies on a kind of “energy localised” Putnam
argument. This method, which is reminiscent of the works [La1, La2] by Lavine, was
introduced in [GJ1] and improved in [Gé, GJ2]. It was originally called “weighted
Mourre theory” but it is closer to Putnam idea (see [CFKS] p. 60) and does not
make use of differential inequalities as the Mourre theory. Note that, up to now, the
latter gives stronger results than the former. It is indeed still unknown whether this
“localised Putnam theory” is able to prove continuity properties of the boundary
values of the resolvent.
We did not succeed in applying the “localised Putnam theory” formulated in [GJ2]
to prove Theorem 1.8. We believe that, again, the bad regularity of H w.r.t. A is
the source of our difficulties (cf. Section 3). Instead, we follow the more complicated
version presented in [GJ1], which relies on a Putnam type argument that is localised
in Q and H, and use the excellent regularity of H w.r.t. 〈Q〉 (cf. Section 3).

A byproduct of the proof of Theorem 1.2 is the local finitness (counting multiplicity)
of the pure point spectrum of H in ]0; +∞[. Thus this local finitness holds true if
|α − 1| + β > 1. We extend this result to the case where |α − 1| + β ≤ 1 in the
following way: the above local finitness is valid in ]0; +∞[, if α > 1, and in ]0; k2/4[,
if α = 1 (cf. Corollary 6.2).
In the papers [FHHH2, FH], polynomial bounds and even exponential bounds were
proven on possible eigenvectors with positive energy. In our framework, those
results fully apply when |α− 1|+ β > 1. Here we get the same polynomial bounds
under the less restrictive Assumptions 1.1 and 1.5 (cf. Proposition 5.1). Concerning
the exponential bounds, we manage to get them under Assumptions 1.1 and 1.5,
but for α > 1 (see Proposition 7.1).
In the papers [FHHH2, FH] again, the absence of positive eigenvalue is proven. In
our framework, this result applies when α < β and when β > 1, provided that the
form [(Vc + v · ∇Ṽsr)(Q), iA] is H0-form-lower-bounded with relative bound < 2
(see (8.1) for details). When α + β > 2 and β ≤ 1, it applies under the same
condition, provided that the oscillating part of the potential is small enough (i.e. if

|w| is small enough). Indeed, in that case, the form [(Vc + v · ∇Ṽsr +Wαβ)(Q), iA]
is H0-form-lower-bounded with relative bound < 2. Inspired by those papers, we
shall derive our second main result, namely
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Figure 2. No positive eigenvalue in blue ∪ green.

Theorem 1.14. Under Assumptions 1.1 and 1.5 with α > 1 when |α− 1|+β ≤ 1,

we assume further that the form [(Vc + v · ∇Ṽsr)(Q), iA] is H0-form-lower-bounded
with relative bound < 2 (see (8.1) for details). Furthermore, we require that |w| is
small enough if α+ β > 2 and β ≤ 1/2. Then H has no positive eigenvalue.

Proof. The result follows from Propositions 7.1 and 8.2. �

Remark 1.15. Our proof is strongly inspired by the ones in [FHHH2, FH]. Actually,
these proofs cover the cases β > 1, α < β, and the case where α + β > 2, β ≤ 1,
and |w| is small enough. In the last case, namely when α > 1, β > 1/2, ρlr > 1−β,
and α+β ≤ 2, the main new ingredient is an appropriate control on the oscillatory
part of the potential. In particular, in the latter case, we do not need any smallness
on |w|.

Remark 1.16. In the case α = β = 1, assuming (8.1), we can show the absence
of eigenvalue at high energy. This follows from Remark 7.3 and Proposition 8.2.
However an embedded eigenvalue does exist for an appropriate choice of V (see
[FH, CFKS, CHM]).

Remark 1.17. Under the assumptions of Theorem 1.14, for any compact interval
I ⊂]0; +∞[, the result of Theorem 1.8, namely (1.4), is valid with Π⊥ replaced by
the identity operator. Indeed, for any compact interval I ′ ⊂]0; +∞[ containing I
in its interior, 1II′(H)Π = 0 by Theorem 1.14. In view of Remark 1.11, the LAP
(1.5) is valid at high energy, when α = β = 1. Thanks to Remark 1.16, one can
also remove Π⊥ in (1.5).

One can find many papers on the absence of positive eigenvalue for Schrödinger
operators: see for instance [Co, K, Si, A, FHHH2, FH, IJ, RS4, CFKS]. They do
not cover the present situation due to the oscillations in the potential. In Fig. 2, we
summarise results on the absence of positive eigenvalue. In the blue region (above
the red and blue lines), the result is granted by [FHHH2, FH], with a smallness
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condition below the blue line. Theorem 1.14 covers the blue and green regions
(above the red lines), with a smallness condition below the black line.

In Assumption 1.5 with |α − 1| + β ≤ 1, the parameter ρlr, that controls the
behaviour at infinity of the long range potential Vlr, stays in a β-dependent region.
One can get rid of this constraint if one chooses a smooth, symbol-like function as
Vlr, as seen in the next

Theorem 1.18. Assume that Assumption 1.1 is satisfied with |α− 1|+ β ≤ 1 and
β > 1/2. Assume further that Vlr : Rd −→ R is a smooth function such that, for
some ρlr ∈]0; 1], for all γ ∈ Nd,

sup
x∈Rd

∣∣〈x〉ρlr+|γ|(∂γxVlr)(x)
∣∣ < +∞ .

Take α = 1. Then the LAP (1.4) holds true on any compact interval I such that
I ⊂]0; k2/4[, if d ≥ 2, and such that I ⊂]0; +∞[\{k2/4}, if d = 1.
Take α > 1. Then the LAP (1.4) holds true on any compact interval I ⊂]0; +∞[.

If, in addition, [(Vc+v ·∇Ṽsr)(Q), iA] is H0-form-lower-bounded with relative bound
< 2 (see (8.1) for details), then H has no positive eigenvalue. In particular, (1.4)
holds true with Π⊥ removed.

Remark 1.19. We expect that our results hold true for a larger class of oscillatory
potential provided that the “interference” phenomenon exhibited in Section 2 is
preserved. In particular, we do not need that Wαβ is radial.

We point out that there still are interesting, open questions on the Schrödinger
operators studied here. Concerning the LAP, for α = 1, it is expected that (1.4)
is false near k2/4. Note that the Mourre estimate is false there, when β = 1 (see
[GJ2]). The validity of (1.4) beyong k2/4 is still open, even at high energy when
β < 1. Concerning the existence of positive eigenvalue, again for α = 1, it is known
in dimension d = 1 that there is at most one at k2/4 if β = 1 (see [FH]). It is
natural to expect that this is still true for d ≥ 2 and β = 1. We do not know what
happens for α = 1 > β.

In Section 2, we analyse the interaction between the oscillations in the potential
Wαβ and the kinetic energy operator H0. In Section 3, we focus on regularity prop-
erties of H w.r.t. A and to 〈Q〉 and discuss the applicability of the Mourre theory
and of the results from the papers [FHHH2, FH]. In Section 4, in some appropriate
energy window, we show the Mourre estimate, which is still a crucial result. We
deduce from it polynomial bounds on possible eigenvectors of H in Section 5. This
furnishes the material for the proof of Theorem 1.10. In Section 6, we show the
local finitness of the point spectrum in the mentioned energy window. In the case
α > 1, we show exponential bounds on possible eigenvectors in Section 7 and prove
the absence of positive eigenvalue in Section 8. Independently of Sections 7 and 8,
we prove Theorem 1.8 in Section 9. Section 10 is devoted to the proof of Theo-
rem 1.18. Finally, we gathered well-known results on pseudodifferential calculus in
Appendix A, basic facts on regularity w.r.t. an operator in Appendix B, known
results on commutator expansions and technical results in Appendix C, and an
elementary, but lengthy argument, used in Section 2, in Appendix D.

Aknowledgement: The first author thanks V. Georgescu, S. Golénia, T. Hargé,
I. Herbst, and P. Rejto, for interesting discussions on the subject. Both authors
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work in progress. Both authors are particularly grateful to the anonymous referee
for his constructive and fruitful report.

2. Oscillations.

In this section, we study the oscillations appearing in the considered potential V .
It is convenient to make use of some standard pseudodifferential calculus, that we
recall in Appendix A. As in [GJ2], our results strongly rely on the interaction of
the oscillations in the potential with localisations in momentum (i.e. in H0). This
interaction is described in the following two propositions.

The oscillating part of the potential V occurs in the potential Wαβ as described
in Assumption 1.1. By (1.1), for some function κ ∈ C∞c (R;R) such that κ = 1 on
[−1; 1] and 0 ≤ κ ≤ 1, Wαβ = w(2i)−1(eα+ − eα−), where

(2.1) eα± : Rd −→ C , eα±(x) =
(
1− κ(|x|)

)
e±ik|x|

α

.

Let g0 be the metric defined in (A.2).

Proposition 2.1. [GJ2]. Let α = 1. For any function θ ∈ C∞c (R;C), there exist
smooth symbols a± ∈ S(1; g0), b±, c± ∈ S(〈x〉−1〈ξ〉−1; g0) such that

(2.2) eα±θ(H0) = aw±e
α
± + bw±e

α
± + eα±c

w
±

and, near the support of 1− κ(| · |), a± is given by

a±(x; ξ) = θ
(∣∣ξ ∓ αk|x|α−2x

∣∣2) = θ
(∣∣ξ ∓ k|x|−1x

∣∣2) .
In particular, if θ has a small enough support in ]0; k2/4[, then, for any ε ∈ [0; 1[,
the operator θ(H0)〈Q〉ε sin(k|Q|)θ(H0) extends to a compact operator on L2(Rd),
and it is bounded if ε = 1.

Remark 2.2. In dimension d = 1, the last result in Proposition 2.1 still holds true
if θ has small enough support in ]0; +∞[\{k2/4} (see [GJ2]).

Proof of Proposition 2.1. See Lemma 4.3 and Proposition A.1 in [GJ2]. �

In any dimension d ≥ 1, for 0 < α < 1, the above phenomenon is absent. A careful
inspection of the proof of (2.2) shows that it actually works if 0 < α < 1. But,
in constrast to the case α = 1, the principal symbol of θ(H0)〈Q〉ε sin(k|Q|)θ(H0),
which is given by

R2d 3 (x; ξ) 7→ (2i)−1θ
(
|ξ|2
)
(a+ − a−)(x; ξ) ,

is not everywhere vanishing, for any choice of nonzero θ with support in ]0; +∞[.
The conditions “|ξ|2 in the support of θ” and “|ξ ∓ αk|x|α−2x|2 in the support of
θ” are indeed compatible for large |x|.
In this setting, namely for 0 < α < 1 and d ≥ 1, one can give the following, more
precise picture with the help of an appropriate pseudodifferential calculus. Take
a nonzero, smooth function θ with compact support in ]0; +∞[. For ε ∈]0; 1[, on
L2(Rd), the operator

θ(H0)〈Q〉ε sin
(
k|Q|α

)
θ(H0)

(
resp. θ(H0) sin

(
k|Q|α

)
θ(H0)

)
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is unbounded (resp. is not a compact operator). Indeed, for the function κ given
in (2.1), the multiplication operator(

1− κ(|Q|)
)

sin
(
k|Q|α

)
is a pseudodifferential operator with symbol in S(1; gα) for the metric gα defined in
(A.2). By pseudodifferential calculus for this admissible metric gα, the symbol of

θ(H0)〈Q〉ε
(
1− κ(|Q|)

)
sin
(
k|Q|α

)
θ(H0) ,

namely

θ
(
|ξ|2
)
#〈x〉ε

(
1− κ(|x|)

)
sin
(
k|x|α

)
#θ
(
|ξ|2
)
,

is not a bounded symbol. Thus, the operator is unbounded on L2(Rd), while

θ(H0)〈Q〉εκ(|Q|) sin
(
k|Q|α

)
θ(H0)

is compact since its symbol θ(|ξ|2)#〈x〉εκ(|x|) sin(k|x|α)#θ(|ξ|2) tends to 0 at in-
finity. Still for the metric gα, the symbol of

θ(H0)
(
1− κ(|Q|)

)
sin
(
k|Q|α

)
θ(H0)

is θ(|ξ|2)#(1 − κ(|x|)) sin(k|x|α)#θ(|ξ|2), that does not tend to zero at infinity.
Therefore θ(H0)(1 − κ(|Q|)) sin(k|Q|α)θ(H0) is not a compact operator, whereas
so is θ(H0)κ(|Q|) sin(k|Q|α)θ(H0).

Remark 2.3. The difference between the cases α = 1 and 0 < α < 1 sketched just
above explains why we exclude the case β ≤ α < 1 in our results. Recall that the
case 0 < α < β ≤ 1 is covered by Theorem 1.2 (cf. Remark 1.6).

In the case α > 1, one can relax the localisation to get compactness as seen in

Proposition 2.4. Let α > 1. For any real p ≥ 0, there exist `1 ≥ 0 and `2 ≥ 0
such that 〈P 〉−`1〈Q〉p(1 − κ(|Q|)) sin(k|Q|α)〈P 〉−`2 extends to a compact operator
on L2(Rd). In particular, so does θ(H0)〈Q〉p(1 − κ(|Q|)) sin(k|Q|α)θ(H0), for any
p and any θ ∈ C∞c (R;C).

Proof. The proof is rather elementary and postponed in Appendix D. Appropriate
`1 and `2 depend on p, α, and on the dimension d. For instance, one can choose `1
and `2 greater than 1 plus the integer part of (α− 1)−1(p+ d). �

Remark 2.5. Take θ ∈ C∞c (R;C), τ ∈ C∞c (Rd;C) such that τ = 1 near zero, and
α > 1. The smooth function

(x; ξ) 7→
(
1− τ(x)

)
θ
(∣∣ξ ∓ αk|x|α−2x

∣∣2) ,
does not belong to S(m; g) for any weight m associated to the metric g0. So we
cannot use the proof of Proposition 2.1 in this case.
The proof of Proposition 2.4 shows that the oscillations manage to transform a
decay in 〈P 〉 in one in 〈Q〉. This is not suprising if one is aware of the following,
one dimensional formula (see eq. (VII. 5; 2), p. 245, in [Sc]), pointed out by V.
Georgescu. For any m ∈ N, there exist λ0, · · · , λ2m ∈ C such that

∀x ∈ R , (1 + x2)m eiπx
2

=

2m∑
j=0

λj
dj

dxj
eiπx

2

.
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Note that the result of Proposition 2.4 is false for α ≤ 1 by Proposition 2.1 and the
discussion following it.

3. Regularity issues.

In this section, we focus on the regularity of H w.r.t. the generator of dilations A
and also the multiplication operator 〈Q〉. We explain, in particular, why neither
the Mourre theory with A as conjugate operator nor the results in [FHHH2, FH]
on the absence of positive eigenvalue can be applied to H in the full framework
of Assumption 1.5. Fig. 3 below provides, in the plane of the parameters (α, β), a
region where those external results apply and another where they do not.

We denote, for k ∈ N, by Hk(Rd) or simply Hk, the Sobolev space of L2(Rd)-
functions such that their distributional derivatives up to order k belong to L2(Rd).
Using the Fourier transform, it can be seen as the domain of the operator 〈P 〉k.
The dual space of Hk can be identified with 〈P 〉−kL2(Rd) and is denoted by H−k.
Recall that A is the self-adjoint realisation of (P ·Q+Q ·P )/2 in L2(Rd). It is well
known that the propagator R 3 t 7→ exp(itA), generated by A, acts on L2(Rd) as(

exp(itA)f
)
(x) = etd/2f

(
etx
)
.

It preserves all the Sobolev spaces Hk, thus the domain D(H) = D(H0) = H2 of
H and H0.
The regularity spaces Ck(A), for k ∈ N∗ ∪ {∞}, are defined in Appendix B. By
Theorem B.3, H ∈ C1(A) if and only if the form [H,A], defined on D(H) ∩ D(A),
extends to a bounded form from H2 to H−2, that is, if and only if there exists
C > 0 such that, for all f, g ∈ H2,

(3.1)
∣∣〈f , [H,A]g〉

∣∣ ≤ C · ‖f‖H2 · ‖g‖H2 .

Before studying the regularity of H w.r.t. A, it is convenient to first show that H is
very regular w.r.t. 〈Q〉. This latter property relies on the fact that V (Q) commutes
with 〈Q〉.

Lemma 3.1. Assume that Assumptions 1.1 and 1.5 are satisfied.

(1) For i, j ∈ {1; · · · ; d}, the operators H0, 〈P 〉, 〈P 〉2, Pi, and PiPj all belong
to C∞(〈Q〉) and D(〈Q〉〈P 〉) = D(〈P 〉〈Q〉).

(2) H ∈ C∞(〈Q〉).
(3) For θ ∈ C∞c (R;C), for i, j ∈ {1; · · · ; d}, the bounded operators θ(H0),

Piθ(H0), PiPjθ(H0), θ(H), Piθ(H), and PiPjθ(H) belong to C∞(〈Q〉), and
we have the inclusion θ(H)D(〈Q〉) ⊂ D(〈P 〉〈Q〉) ∩ D(H0).

Proof. See Appendix C. �

The form [H,A] is defined on D(H)∩D(A) by 〈f, [H, iA]g〉 = 〈Hf,Af〉−〈Af,Hf〉.
Let χc ∈ C∞c (Rd;R) such that χc = 1 on the compact support of Vc. By statement
(1) in Lemma 3.1, the form [H,A] coincides, on D(〈P 〉〈Q〉)∩D(H0), with the form
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[H, iA]
′

given by

〈f , [H, iA]
′
g〉 = 〈f , [H0, iA]

′
g〉 + 〈f , [Vsr(Q), iA]

′
g〉 + 〈f , [Vc(Q), iA]

′
g〉

+ 〈f , [Vlr(Q), iA]
′
g〉 + 〈f , [Wαβ(Q), iA]

′
g〉(3.2)

+ 〈f , [(v · ∇Ṽsr)(Q), iA]
′
g〉 ,

where 〈f , [H0, iA]
′
g〉 = 〈f , 2H0g〉, 〈f , [Vlr, iA]

′
g〉 = −〈f , Q · (∇Vlr)(Q)g〉,

〈f , [Vsr(Q), iA]
′
g〉 = 〈Vsr(Q)Qf , iPg〉 + 〈iPf , Vsr(Q)Qg〉

+ d〈f , Vsr(Q)g〉 ,(3.3)

〈f , [Vc(Q), iA]
′
g〉 = 〈Vc(Q)f , χc(Q)Q · iPg〉 + 〈χc(Q)Q · iPf , Vc(Q)g〉

+ d〈f , Vc(Q)g〉 ,(3.4)

〈f , [(v · ∇Ṽsr)(Q), iA]
′
g〉 = 〈Ṽsr(Q)f , (P · v(Q))(Q.P + 2−1d)g〉

+ 〈(P · v(Q))(Q.P + 2−1d)f , Ṽsr(Q)g〉(3.5)

〈f , [Wαβ(Q), iA]
′
g〉 = 〈Wαβ(Q)Qf , iPg〉 + 〈iPf , Wαβ(Q)Qg〉

+ d〈f , Wαβ(Q)g〉 .(3.6)

Here 〈Vsr(Q)Qf , iPg〉 means
∑d
j=1〈Vsr(Q)Qjf , iPjg〉.

Thanks to Assumption 1.1, we see that the forms [Vsr(Q), iA], [Vc(Q), iA], [(v ·
∇Ṽsr)(Q), iA]

′
, and [Vlr(Q), iA] are bounded on F and associated to a compact

operator from F to its dual F ′, for F given by H1(Rd), H2(Rd), H2(Rd) again, and
L2(Rd), respectively. In particular, (3.1) holds true withH replaced byH−Wαβ(Q).
This proves that H −Wαβ(Q) ∈ C1(A).

Proposition 3.2. Assume Assumption 1.1 with w 6= 0 and |α− 1|+ β < 1. Then
H 6∈ C1(A).

Remark 3.3. The Mourre theory with conjugate operator A requires a C1,1(A)
regularity for H, a regularity that is stronger than the C1(A) regularity (cf. [ABG],
Section 7). Thus this Mourre theory cannot be applied to prove our Theorem 1.8,
by Proposition 3.2.
As mentioned in Remark 1.6, Theorem 1.2 applies if |α − 1| + β > 1. In fact,
the proof of this theorem relies on the fact that, in that case, H has actually the
C1,1(A) regularity.
According to [Mar], H would have the C1,1(A′) regularity for some other conjugate
operator A′ if 2α+ β > 3.
Concerning the proof of the absence of positive eigenvalue in [FHHH2, FH], it is
assumed in those papers that (3.1) holds true for H replaced by V . Proposition 3.2
shows that this assumption is not satisfied if |α − 1| + β < 1. In particular, our
Theorem 1.14 is not covered by the results in [FHHH2, FH].
If |α−1|+β < 1, the form [H,A] is not bounded fromH2 toH−2. However, we shall
prove in Proposition 4.6 that, for appropriate function θ, the form θ(H)[H,A]θ(H)
does extend to a bounded one on L2(Rd). This will give a meaning to the Mourre
estimate and we shall prove its validity. Although H 6∈ C1(A), we shall be able to
prove the “virial theorem” (see Proposition 6.1).
Finally, we note that the proof of Theorem 4.15 in [GJ2] (and also the one of our
Theorem 1.10) uses at the very begining that H ∈ C1(A). We did not see how to
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modify this proof when H 6∈ C1(A). This explains why we chose to use the ideas of
[GJ1] to prove Theorem 1.8 (see Section 9).

Proof of Proposition 3.2. Thanks to the considerations preceeding Proposition 3.2,
we know that H −Wαβ(Q) ∈ C1(A). Thus, for w 6= 0, H ∈ C1(A) if and only if the
bound (3.1) holds true with H replaced by Wαβ(Q).
Let w 6= 0 and (α;β) such that 2|α− 1|+ β < 1. Let ε ∈]2|α− 1|; 1− β + |α− 1|].
We set, for all x ∈ Rd,

f(x) =
(
1− κ(|x|)

)
· |x||α−1|−2−1(d+ε)

and g(x) = −
(
1− κ(|x|)

)
· |x|1−α−2−1(d+ε) · cos

(
k|x|α

)
.

Notice that f ∈ H2, f ∈ D(Q · P ) = D(A), and g ∈ H2. Furthermore, there exists
f1 ∈ L2(Rd) such that, for all x ∈ Rd,

x · ∇g(x) = f1(x) + kα
(
1− κ(|x|)

)
|x|1−2−1(d+ε) · sin

(
k|x|α

)
.

For n ∈ N∗, let gn : Rd −→ R be defined by gn(x) = κ(n−1|x|)g(x). It belongs to
H2(Rd). By the dominated convergence theorem, the sequence (gn)n converges to
g in H2(Rd). Moreover the following limits exist and we have

〈iPf , Wαβ(Q)Qg〉 = lim
n→∞

〈iPf , Wαβ(Q)Qgn〉

and 〈f , Wαβ(Q)g〉 = lim
n→∞

〈f , Wαβ(Q)gn〉 .

By the previous computation,

〈Wαβ(Q)Qf , iPgn〉 = 〈Wαβ(Q)f , if1〉 + o(1)

+wkα

∫
Rd
κ(n−1|x|)

(
1− κ(|x|)

)3|x|1−β+|α−1|−(d+ε) · sin2
(
k|x|α

)
dx ,

as n→∞. By the monotone convergence theorem, the above integrals tend to

(3.7)

∫
Rd

(
1− κ(|x|)

)3|x|1−β+|α−1|−(d+ε) · sin2
(
k|x|α

)
dx ,

as n → ∞. By Lemma C.7, the integral (3.7) is infinite. If (3.1) would hold true
with H replaced by Wαβ(Q), the sequence(

〈f, [Wαβ(Q), iA]gn〉
)
n

would converge. Therefore the integral (3.7) would be finite, by (3.6). Contradic-
tion. Thus H 6∈ C1(A). �

In Fig. 3 , we summarised the above results. Note that the results of [FHHH2, FH]
on the absence of positive eigenvalue apply the blue region.

Keeping A as conjugate operator, we could try to apply another version of Mourre
commutator method, namely the one that relies on “local regularity” (see [Sa]).

Let us recall this type of regularity. Remember that a bounded operator T belongs
to C1(A) if the map t 7→ exp(itA)T exp(−itA) is strongly C1 (cf. Appendix B). We
say that such an operator T belongs to C1,u(A) if the previous map is norm C1.

Let I be an open subset of R. We say that H ∈ C1
I(A) (resp. H ∈ C1,u

I (A)) if,
for any function ϕ ∈ C∞c (R;C) with support in I, ϕ(H) ∈ C1(A) (resp. C1,u(A)).
The Mourre theory with “local regularity” requires some C1+0

I (A) regularity, that

is stronger than the C1,u
I (A), to prove the LAP inside I. In our situation, we focus
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Figure 3. H ∈ C1,1(A) in the blue region; H 6∈ C1(A) in the red region.

on open, relatively compact interval I ⊂]0; +∞[ and denote by I the closure of I.
We first recall a result in [GJ2].

Proposition 3.4. [GJ2]. Assume Assumption 1.1 with w 6= 0, α = β = 1, and

Ṽsr = Vc = 0. Then, for any open interval I ⊂ I ⊂]0; +∞[, H 6∈ C1,u
I (A).

Remark 3.5. Note that, in the framework of Proposition 3.4, H ∈ C1(A). This
implies (cf. [GJ2]) that, for any open interval I ⊂ I ⊂]0; +∞[, H ∈ C1

I(A). But,

since the C1+0
I (A) regularity is not available, the Mourre theory with conjugate

operator A, that is developped in [Sa], cannot apply.

We believe that Proposition 3.4 still holds true for nonzero Ṽsr and Vc.

Proposition 3.6. Assume Assumption 1.1 with Vc = Ṽsr = 0, w 6= 0, α = 1, β ∈
]1/2; 1[, and ρlr > 1/2. Then, for any open interval I ⊂ I ⊂]0; +∞[, H 6∈ C1

I(A).

Remark 3.7. By Proposition 3.6, the Mourre theory with local regularity w.r.t.
the conjugate operator A cannot be applied to recover Theorem 1.8 in the region
V ∩ {(1;β); 0 < β < 1}.
The proof of Proposition 3.6 below is close to the one of Proposition 3.4 in [GJ2].
Since H 6∈ C1(A), we need however to be a little bit more careful.

Proof of Proposition 3.6. We proceed by contradiction. Assume that, for some
open interval interval I ⊂ I ⊂]0; +∞[, H ∈ C1

I(A). Then, for all ϕ ∈ C∞c (R;C)
with support in I, ϕ(H) ∈ C1(A), by definition. Take such a function ϕ. Since
H0 ∈ C1(A), ϕ(H0) ∈ C1(A). Therefore, the form [ϕ(H)− ϕ(H0), iA] extends to a
bounded form on L2(Rd). We shall show that, for some bounded operator B and
B′ on L2()Rd, the form B[ϕ(H)−ϕ(H0), iA]B′ coincides, modulo a bounded form
on L2(Rd), with the form associated to a pseudodifferential operator cw w.r.t. the
metric g0 (cf. (A.2)), the symbol of which, c, is not bounded. By (A.5), cw is not
bounded and we arrive at the desired contradiction.
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Let f, g be functions in the Schwartz space S (Rd;C) on Rd. We write

〈f , Cg〉 := 〈f , [ϕ(H)− ϕ(H0), iA]g〉
=

〈(
ϕ(H)∗ − ϕ(H0)∗

)
f , iAg

〉
−
〈
Af , i

(
ϕ(H)− ϕ(H0)

)
g
〉
.

Now, we use (C.5) with k = 0 and the resolvent formula to get

〈f , Cg〉 =

∫
C
∂z̄ϕ

C(z)
{〈

(z̄ −H)−1V (Q)(z̄ −H0)−1f , iAg
〉

−
〈
Af , i(z −H)−1V (Q)(z −H0)−1g

〉}
dz ∧ dz̄ .

Recall that V = Vsr+W with W = Vlr+W1β . Using (C.12), we can find a bounded
operator B1 such that

〈f , (C −B1)g〉 =

∫
C
∂z̄ϕ

C(z)
{〈

(z̄ −H)−1W (Q)(z̄ −H0)−1f , iAg
〉

−
〈
Af , i(z −H)−1W (Q)(z −H0)−1g

〉}
dz ∧ dz̄ .

Using again the resolvent formula and (C.12) and the fact that 2βlr > 1, we can
find another bounded operator B2 such that

〈f , (C −B2)g〉 =

∫
C
∂z̄ϕ

C(z)
{〈

(z̄ −H0)−1W (Q)(z̄ −H0)−1f , iAg
〉

−
〈
Af , i(z −H0)−1W (Q)(z −H0)−1g

〉}
dz ∧ dz̄ .(3.8)

Since the form [Vlr(Q), iA] is bounded from H2 to H−2, H1 := H0 +Vlr(Q) has the
C1(A) regularity. Therefore, we can redo the above computation with H replaced
by H1 to see that the contribution of Vlr in (3.8) is actually bounded. Thus, for
some bounded operator B3,

〈f , (C −B3)g〉 =

∫
C
∂z̄ϕ

C(z)
{〈

(z̄ −H0)−1W1β(Q)(z̄ −H0)−1f , iAg
〉

−
〈
Af , i(z −H0)−1W1β(Q)(z −H0)−1g

〉}
dz ∧ dz̄ .

Recall that W1β = w(2i)−1(e+ − e−), where e± = eα± is given by (2.1) with α = 1.
Let χβ : [0; +∞[−→ R be a smooth function such that χβ = 0 near 0 and χβ(t) =
t−β when t belongs to the support of 1− κ. Thus, 〈f , (C −B3)g〉 is

= −w
2

∑
σ∈{±1}

σ

∫
C
∂z̄ϕ

C(z)
{〈
eσ(Q)(z̄ −H0)−1f , χβ(|Q|)(z −H0)−1Ag

〉
−
〈
χβ(|Q|)(z̄ −H0)−1Af , eσ(Q)(z −H0)−1g

〉}
dz ∧ dz̄ .

Now, we use the arguments of the proof of Lemma 5.5 in [GJ2] to find a symbol
b ∈ S(1; g0) such that, forB′ = eik|Q|, for all f, g ∈ S (Rd;C), 〈f , bw(C−B3)B′g〉 =
〈f , cwg〉, where c is unbounded. Actually, there exist ξ ∈ Rd, R > 0 and C > 0
such that |c(x; ξ)| ≥ C|x|1−β , for |x| ≥ R. �

4. The Mourre estimate.

In this section, we establish a Mourre estimate for the operator H near appropriate
positive energies. In the spirit of [FH], we deduce from it spacial decaying, polyno-
mial bounds on the possible eigenvectors of H at that energies. Since H does not
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have a good regularity w.r.t. the conjugate operator A (cf. Section 3), the abstract
setting of Mourre theory does not help much and we have to look more precisely
at the structure of H. The properties derived in Section 2 play a key role in the
result.

Still working under Assumption 1.1, we shall modify, only in the case α = 1,
Assumption 1.5 by requiring the following

Assumption 4.1. Let α, β > 0. Recall that βlr = min(β; ρlr). Unless |α−1|+β >
1, we take α ≥ 1 and we take β and ρlr such that β + βlr > 1 or, equivalently,
β > 1/2 and ρlr > 1−β. We consider a compact interval J such that J ⊂]0; +∞[,
except when α = 1 and β ∈]1/2; 1], and, in the latter case, we consider a small
enough, compact interval J such that J ⊂]0; k2/4[.

Remark 4.2. Assumption 4.1 is identical to Assumption 1.5, except for the change
of the name of the interval and for the smallness requirement when α = 1 and
β ∈]1/2; 1]. We actually need to work in a slightly larger interval J than the
interval I considered in Theorem 1.8. In the case α = 1 and β ∈]1/2; 1], the
smallness of J (and thus of the above I) is the one that matches the smallness
required in Proposition 2.1. It depends only on the distance of the middle point of
J to k2/4.

As pointed out in Section 3, the form [H,A] does not extend to a bounded form
from H2 to H−2 for a certain range of the parameters α and β. Thus, given a
function θ ∈ C∞c (R;C), we do not know a priori if the forms θ(H)[H, iA]θ(H) and
θ(H)[H, iA]′θ(H) extend to a bounded one on L2. Recall that [H, iA]′ is defined
in (3.2). Nethertheless these two forms are well defined and coincide on D(〈Q〉),
by Lemma 3.1. By Section 3 again, we know that the difficulty is concentrate in
the contribution of the oscillating potential Wαβ , namely (3.6). Thanks to the
interaction between the oscillations and the kinetic operator, we are able to show
the following

Proposition 4.3. Under Assumptions 1.1 and 4.1, let θ ∈ C∞c (R;R) with support

inside J̊ , the interior of J , the form θ(H)[Wαβ(Q), iA]θ(H) extends to a bounded
form on L2(Rd) that is associated to a compact operator.

Remark 4.4. In dimension d = 1 with α = 1, the result still holds true if the
function θ is supported inside ]0; +∞[\{k2/4}.

Our proof of Proposition 4.3 relies on Propositions 2.1, 2.4, and on the following

Lemma 4.5. Assume Assumptions 1.1 and 1.5 satisfied. Let θ ∈ C∞c (R;C). Then
〈Q〉βlr (θ(H)− θ(H0)) and 〈Q〉βlrP (θ(H)− θ(H0)) are bounded on L2(Rd).

Proof. See Lemma C.5. �

Proof of Proposition 4.3. It suffices to study the form θ(H)[Wαβ(Q), iA]′θ(H),
where [Wαβ(Q), iA]′ is defined in (3.6).
Consider first the case where |α−1|+β > 1. By Remark 1.6, the form [Wαβ(Q), iA]′

is of one of the types [Vlr(Q), iA]′, (3.3), and (3.5). It is thus compact from H2 to
H−2. Since 〈P 〉2θ(H) is bounded, the form θ(H)[Wαβ(Q), iA]′θ(H) extends to a
bounded one on L2(Rd), that is associated to a compact operator on L2(Rd).



OSCILLATING POTENTIALS 17

We assume now that |α − 1| + β ≤ 1. Since β > 0, the form θ(H)Wαβ(Q)θ(H)
extends to a bounded form associated to a compact operator. We study the form
(f, g) 7→ 〈Pθ(H)f , Wαβ(Q)Qθ(H)g〉, the remainding term being treated in a sim-
ilar way. We write this form as

θ(H)P ·QWαβ(Q)θ(H) =
(
θ(H)− θ(H0)

)
P ·QWαβ(Q)

(
θ(H)− θ(H0)

)
+
(
θ(H)− θ(H0)

)
P ·QWαβ(Q)θ(H0)

+ θ(H0)P ·QWαβ(Q)
(
θ(H)− θ(H0)

)
(4.1)

+ θ(H0)P ·QWαβ(Q)θ(H0) .

Using Lemma 4.5 and the fact that β+βlr−1 > 0, we see that the first three terms
on the r.h.s. of (4.1) extends to a compact operator. So does also the last term, by
Proposition 2.1 with ε = 1− β, if α = 1, and by Proposition 2.4 with p = 1− β, if
α > 1. �

Now, we are in position to prove the Mourre estimate.

Proposition 4.6. Under Assumptions 1.1 and 4.1, let θ ∈ C∞c (R,R) with support

inside the interior J̊ of the interval J . Denote by c > 0 the infimum of J . Then
the form θ(H)[H, iA]θ(H) extends to a bounded one on L2(Rd) and there exists a
compact operator K on L2(Rd) such that

(4.2) θ(H)[H, iA]θ(H) ≥ 2c θ(H)2 + K .

Proof. Let K0 be the operator associated with the form

θ(H)[Vsr(Q), iA]θ(H) + θ(H)[(v · ∇Ṽsr)(Q), iA]
′
θ(H) + θ(H)[Vlr(Q), iA]θ(H)

+ θ(H)[Vc(Q), iA]θ(H) + θ(H)[Wαβ(Q), iA]θ(H) .

It is compact by Section 3 and Proposition 4.3. Thus, as forms,

θ(H)[H, iA]θ(H) = θ(H)[H0, iA]θ(H) + K0 .

Since [H0, iA] = 2H0, the form(
θ(H)− θ(H0)

)
[H0, iA]θ(H) + θ(H0)[H0, iA]

(
θ(H)− θ(H0)

)
is associated to a compact operator K1, by Lemma 4.5, and

θ(H)[H, iA]θ(H) = θ(H0)[H0, iA]θ(H0) + K0 + K1

≥ 2c θ(H0)2 + K0 + K1

≥ 2c θ(H)2 + K0 + K1 + K3 ,

with compact K3 = 2c(θ(H0)2 − θ(H)2). �

5. Polynomial bounds on possible eigenfunctions with positive
energy.

In this section, we shall show a polynomially decaying bound on the possible eigen-
functions of H with positive energy. Because of the oscillating behaviour of the
potential Wαβ , the corresponding result in [FH] does not apply (cf. Section 3) but
it turns out that one can adapt the arguments from [FH] to the present situation.
We note further that the abstract results in [Ca, CGH] cannot be applied here
because of the lack of regularity w.r.t. the generator of dilations (cf. Section 3).
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Proposition 5.1. Under Assumptions 1.1 and 4.1, let E ∈ J̊ and ψ ∈ D(H) such
that Hψ = Eψ. Then, for all λ ≥ 0, ψ ∈ D(〈Q〉λ) and ∇ψ ∈ D(〈Q〉λ).

Corollary 5.2. Under Assumptions 1.1 and 4.1, for E ∈ J̊ , Ker(H−E) ⊂ D(A).

Proof. Let ψ ∈ Ker(H−E). By Proposition 5.1, ∇ψ ∈ D(〈Q〉) thus ψ ∈ D(A). �

Proof of Proposition 5.1. We take a function θ ∈ C∞c (R;R) with support inside J̊
such that θ(E) = 1. By Proposition 4.6, the Mourre estimate (4.2) holds true.
Now we follow the beginning of the proof of Theorem 2.1 in [FH], making appro-
priate adaptations. For λ ≥ 0 and ε > 0, we consider the function F : Rd → R
defined by F (x) = λ ln(〈x〉(1 + ε〈x〉)−1). For all x ∈ Rd, ∇F (x) = g(x)x with
g(x) = λ〈x〉−2(1 + ε〈x〉)−1. Let H(F ) be the operator defined on the domain
D(H(F )) := D(H0) = H2(Rd) by

(5.1) H(F ) = eF (Q)He−F (Q) = H − |∇F |2 + (iP · ∇F +∇F · iP ) .

Setting ψF = eF (Q)ψ, one has ψF ∈ D(H0), H(F )ψF = EψF , and 〈ψF , HψF 〉 =
〈ψF , (|∇F |2 + E)ψF 〉.
Note that, since eF does not contain decay in 〈x〉, we a priori need some argument
to give a meaning to 〈ψF , [H, iA]ψF 〉 when β < 1, because of the contribution of
Wαβ in (3.2).
Let χ ∈ C∞c (R;R) with χ = 1 near 0 and, for R ≥ 1, let χR(t) = χ(t/R). To replace
Equation (2.9) in [FH], we claim that

lim
R→+∞

〈χR(〈Q〉)ψF , [H , iA]χR(〈Q〉)ψF 〉 = −4 ·
∥∥g(Q)1/2AψF

∥∥2
(5.2)

+
〈
ψF , G(Q)ψF

〉
,

where G : Rd 3 x 7→ ((x · ∇)2g)(x) − (x · ∇|∇F |2)(x). Notice that χR(〈Q〉)ψF ∈
D(〈Q〉〈P 〉), so the bracket on the l.h.s. of (5.2) is well defined. Since, for x ∈ Rd,
|g(x)| ≤ λ〈x〉−1 and |G(x)| = O(〈x〉−2), so is the r.h.s. By a direct computation,

2<
〈
AχR(〈Q〉)ψF , i(H(F )− E)χR(〈Q〉)ψF

〉
= −

〈
χR(〈Q〉)ψF , [H , iA]χR(〈Q〉)ψF

〉
− 4 ·

∥∥g(Q)1/2AχR(〈Q〉)ψF
∥∥2

+
〈
χR(〈Q〉)ψF , G(Q)χR(〈Q〉)ψF

〉
.(5.3)

Note that the commutator [H(F ) , χR(Q)]◦ is well-defined since χR(Q) preserves
the domain of H(F ). Furthermore [H(F ) , χR(Q)]◦ = [H0(F ) , χR(Q)]◦, where
H0(F ) = eF (Q)H0e

−F (Q) is a pseudodifferential operator. Notice that the l.h.s of
(5.3) is given by

2<
〈
AχR(Q)ψF , i[H(F ) , χR(Q)]◦ψF

〉
.

Using an explicit expression for the commutator and the fact that the family of
functions x 7→ 〈x〉χ′R(〈x〉) is bounded, uniformly w.r.t. R, and converges pointwise
to 0, as R → +∞, we apply the the dominated convergence theorem to see that
the l.h.s. of (5.3) tends to 0 and that the last two terms in (5.3) converge to the
r.h.s. of (5.2). Thus the limit in (5.2) exists and (5.2) holds true.
Next we claim that

lim
R→+∞

〈
χR(〈Q〉)ψF , [H , iA]χR(〈Q〉)ψF

〉
=

〈
θ(H)ψF , [H , iA]θ(H)ψF

〉
+
〈
ψF , (K1B1,ε +B2,εK2)ψF

〉
(5.4)
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where, on L2(Rd), K1, K2 are ε-independent compact operators and B1,ε, B2,ε are
bounded operators satisfying ‖B1,ε‖ + ‖B2,ε‖ = O(ε0). Notice that, by Proposi-
tion 4.6, the first term on the r.h.s of (5.4) is well defined and equal to

lim
R→+∞

〈
θ(H)χR(〈Q〉)ψF , [H , iA]θ(H)χR(〈Q〉)ψF

〉
.

Writing each χR(〈Q〉)ψF as χR(〈Q〉)ψF = θ(H)χR(Q) + (1− θ(H))χR(〈Q〉)ψF , we
split 〈χR(〈Q〉)ψF , [H , iA]χR(〈Q〉)ψF 〉 into four terms, one of them tending to the
first term on the r.h.s of (5.4). We focus on the others. Since (1− θ(H))ψ = 0,(

1− θ(H)
)
χR(〈Q〉)ψF = − [θ(H), χR(〈Q〉)]◦ψF

−χR(〈Q〉)[θ(H), eF (Q)]◦ψ ,(5.5)

P
(
1− θ(H)

)
χR(〈Q〉)ψF = −P [θ(H), χR(〈Q〉)]◦ψF

− [P, χR(〈Q〉)][θ(H), eF (Q)]◦ψ

−χR(〈Q〉)P [θ(H), eF (Q)]◦ψ .(5.6)

Lemma 5.3. Recall that βlr = min(β; ρlr) ≤ 1. For intergers 1 ≤ i, j ≤ d, let
τ(P ) = 1, or τ(P ) = Pi, or τ(P ) = PiPj.

(1) For σ ∈ [0; 1], the operators

〈Q〉1−στ(P )
[
θ(H), eF (Q)

]
◦e
−F (Q)〈Q〉σ

are bounded on L2(Rd), uniformly w.r.t. ε ∈]0; 1].
(2) For R ≥ 1, the operators

〈Q〉1−βlrτ(P )
[
θ(H), χR(〈Q〉)

]
◦

are bounded on L2(Rd) and their norm are O(R−βlr ).

Proof. For the result (2), see the proof of Lemma C.6.
Let us prove (1). Making use of Helffer-Sjöstrand formula (C.5) and of (C.12), for
H ′ = H, we can show by induction that, for all j ∈ N∗,

(5.7) 〈Q〉1−σ · adj〈Q〉
(
θ(H)

)
· 〈Q〉σ

is bounded on L2(Rd). Note that the function eF can be written as ϕε(〈·〉), where
ϕε stays in a bounded set in Sλ, when ε varies in ]0; 1]. Since θ(H) ∈ C∞(〈Q〉) (cf.
Lemma 3.1), we can apply Propositions C.3 with B = θ(H) and k > λ + 1. By
(5.7), the first terms are all bounded on L2(Rd). Let us focus on the last one, that
contains an integral. Exploiting (C.2) with ` = k + 1, (C.3), (C.7), (5.7), and the
fact that ϕε(〈·〉) is bounded below by 1/2 for ε ∈]0; 1], we see that the last term is
also bounded on L2(Rd). �

Proof of Proposition 5.1 continued. Using Lemma 5.3 and (5.5), we get that

lim
R→+∞

〈
θ(H)χR(〈Q〉)ψF , P ·QWαβ(Q)

(
1− θ(H)

)
χR(〈Q〉)ψF

〉
= −

〈
KψF , Wαβ(Q)〈Q〉βQ〈Q〉−1 · 〈Q〉[θ(H), eF (Q)]◦e

−F (Q)ψF
〉

where K is an ε-independent vector of compact operators and the bounded operator
acting on the right ψF is uniformly bounded w.r.t. ε. Similarly, using Lemma 5.3
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and (5.6), we see that

lim
R→+∞

〈
θ(H)χR(〈Q〉)ψF , Wαβ(Q)Q · P

(
1− θ(H)

)
χR(〈Q〉)ψF

〉
= −

〈
K ′ψF , Wαβ(Q)〈Q〉βQ〈Q〉−1 · 〈Q〉P [θ(H), eF (Q)]◦e

−F (Q)ψF
〉

with K ′ compact and an uniformly bounded operator acting on the right ψF . Using
again (5.5) and (5.6), we also get

lim
R→+∞

〈(
1− θ(H)

)
χR(〈Q〉)ψF , Wαβ(Q)Q · P

(
1− θ(H)

)
χR(〈Q〉)ψF

〉
=

〈
〈Q〉−β/2[θ(H), eF (Q)]◦e

−F (Q)〈Q〉β/2〈P 〉K ′′ψF ,
Wαβ(Q)〈Q〉βQ〈Q〉−β/2P [θ(H), eF (Q)]◦e

−F (Q)ψF
〉

with compact K ′′ = 〈P 〉−1〈Q〉−β/2 and uniformly bounded operators acting on the
right ψF and on K ′′ψF .
In a similar way, we can treat the last term in the contribution of [Wαβ(Q), iA]′

and the contribution of the forms [H0, iA]′, [Vlr(Q), iA]′, [Vsr(Q), iA]′, [Vc(Q), iA]′,

and [(v · ∇Ṽsr)(Q), iA]
′

(cf. (3.2), (3.3), (3.4), (3.5)). This ends the proof of (5.4),
yielding, together with (5.2),〈

θ(H)ψF , [H , iA]θ(H)ψF
〉

= −4 ·
∥∥g(Q)1/2AψF

∥∥2
+
〈
ψF , G(Q)ψF

〉
(5.8)

−
〈
ψF , (K1B1,ε +B2,εK2)ψF

〉
.

Assume that, for some λ > 0, ψ 6∈ D(〈Q〉λ). We define Ψε = ‖ψF ‖−1ψF . As in
[FH], (H0 + 1)Ψε and thus Ψε both go to 0, weakly in L2(Rd), as ε→ 0. Therefore
‖K1Ψε‖+‖K2Ψε‖ → 0, as ε→ 0. SinceG(Q)(H0+1)−1 is compact, ‖G(Q)Ψε‖ → 0.
Since (1− θ(H))ψ = 0,

(1− θ(H))Ψε =
[
θ(H), eF (Q)

]
◦e
−F (Q)〈Q〉〈Q〉−1(H0 + 1)−1(H0 + 1)Ψε .

Since [θ(H), eF (Q)]◦e
−F (Q)〈Q〉 is uniformly bounded w.r.t. ε, by Lemma 5.3, and

〈Q〉−1(H0 + 1)−1 is compact, the weak convergence to 0 of (H0 + 1)Ψε implies the
norm convergence to 0 of (1− θ(H))Ψε. Thus limε→0 ‖θ(H)Ψε‖ = 1.
Dividing by ‖ψF ‖2 in (5.8) and then taking the “lim infε→0”, we get

lim inf
ε→0

〈
θ(H)Ψε , [H , iA]θ(H)Ψε

〉
= −4 · lim inf

ε→0

∥∥g(Q)1/2AΨε

∥∥2 ≤ 0 .

Now, we apply the Mourre estimate (4.2) to Ψε, yielding

lim inf
ε→0

〈
θ(H)Ψε , [H , iA]θ(H)Ψε

〉
≥ 2c lim inf

ε→0
‖θ(H)Ψε‖2 + 0 = 2c > 0

and a contradiction. Therefore ψ ∈ D(〈Q〉λ), for all λ > 0.
Take λ > 0. Since V (Q) is H0-bounded with relative bound 0, we can find, for any
δ ∈]0; 1[, some Cδ > 0 such that, for all ε > 0,

|〈ψF , V (Q)ψF 〉| ≤ δ〈ψF , H0ψF 〉 + C ‖ψF ‖2 = δ‖∇ψF ‖2 + C ‖ψF ‖2 .
Using the equality 〈ψF , HψF 〉 = 〈ψF , (|∇F |2(Q) + E)ψF 〉, we can find C ′, C ′′ > 0
such that, for all ε > 0,

(5.9) ‖∇ψF ‖2 ≤ C ′‖ψF ‖2 ≤ C ′‖〈Q〉λψ‖2 =: (C ′′)2 .

Now, ∇ψF = (∇F )(Q)ψF + eF (Q)∇ψ, yielding, for all ε > 0,

‖eF (Q)∇ψ‖ ≤ C ′′ + ‖ψF ‖ ≤ C ′′ + ‖〈Q〉λψ‖ .
This shows that ∇ψ belongs to D(〈Q〉λ). �
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6. Local finitness of the point spectrum.

In the usual Mourre theory, one easily deduces from a Mourre estimate on some
compact interval J the finitness of the point spectrum in any compact interval
I ⊂ J̊ , the interior of J , thanks to the virial Theorem. In the present situation,
for some values of the parameters α and β, we do not have the required regularity
of H w.r.t. A (cf. Section 3) to apply the abstract virial Theorem. But, thanks to
Corollary 5.2, we are able to get it in a trivial way.

Proposition 6.1. Under Assumptions 1.1 and 4.1, let E ∈ J̊ and ψ ∈ D(H) such
that Hψ = Eψ. Then 〈ψ, [H,A]ψ〉 = 0.

Proof. Since ψ ∈ D(A) by Corollary 5.2, 〈ψ, [H,A]ψ〉 is well defined and

〈ψ , [H,A]ψ〉 = 〈Hψ , Aψ〉 − 〈Aψ , Hψ〉 = 0 ,

because E is real and A is self-adjoint. �

Now, the Mourre estimate in Proposition 4.6 gives the

Corollary 6.2. Under Assumptions 1.1 and 4.1, for any compact interval I ⊂ J̊ ,
the point spectrum of H inside I is finite (counted with multiplicity).

Proof. One can follow the usual proof. See [ABG] p. 295 or [Mo], for instance. �

Thanks to Corollaries 5.2 and 6.2, we are able to prove the following regularity
result. The precise definition of the mentioned regularity is given in Appendix B.

Corollary 6.3. Under Assumptions 1.1 and 4.1, for any θ ∈ C∞c (R;C) with support

included in J̊ , θ(H)Π ∈ C1(A) and θ(H)Π ∈ C∞(〈Q〉).

Proof. For ψ ∈ D(A), the projector 〈ψ, ·〉ψ belongs to C1(A) since the form

D(A)2 3 (ϕ1;ϕ2) 7→
〈
ϕ1,
[
〈ψ, ·〉ψ , A

]
ϕ2

〉
= 〈ψ,ϕ1〉〈Aψ,ϕ2〉 − 〈ψ,ϕ2〉 〈ϕ1, Aψ〉

extends to a bounded one. By Corollary 6.2, the point spectrum of H inside the
support of θ is some {λ1; · · · ;λn} and there exist ψ1, · · · , ψn ∈ D(H) such that
Hψj = λjψj , for all j. By Corollary 5.2, ψj ∈ D(A), for all j. Since

(6.1) θ(H) Π =

n∑
j=1

θ(λj) 〈ψj , ·〉ψj ,

θ(H)Π ∈ C1(A).
Similarly, we show θ(H)Π ∈ C∞(〈Q〉) using (6.1) and Proposition 5.1. �

7. Exponential bounds on possible eigenfunctions with positive
energy.

In this section, unless |α − 1| + β > 1, we impose α > 1. We consider positive
energies and show that, a possible eigenfunction of H, associated to such energies,
must satisfy some exponential bound in the L2-norm. The result and the proof
are almost identical to Theorem 2.1 in [FH] and its proof. We only change some
argument to take into account the influence of our oscillating potential. We try to
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explain in Remark 7.2 below why we do not treat here the case α = 1. However,
we have some information at high energy in the case α = β = 1 (see Remark 7.3).

Proposition 7.1. Under Assumptions 1.1 and 1.5 with α > 1 when |α−1|+β ≤ 1,
let E > 0 and ψ ∈ D(H) such that Hψ = Eψ. Let

r = sup
{
t2 + E ; t ∈ [0; +∞[ and et〈Q〉ψ ∈ L2(Rd)

}
≥ E .

Then r = +∞.

Proof. We exactly follow the lines of the last part of Theorem 2.1 in [FH], except
for one important argument and some details. Just after formula (2.35) in [FH],
the authors use the boundedness of (H0 + 1)−1[H, iA](H0 + 1)−1 to show that the
l.h.s. of this formula (2.35) is bounded w.r.t. λ. Here we cannot do so (the previous
form is actually unbounded, by Section 3) but provide another argument (see (7.4))
to get the same conclusion. For completeness, we recall the main lines of this last
part of the proof of Theorem 2.1 in [FH].
Assume that the result is false. Then r is finite. By Proposition 4.6, the Mourre
estimate (4.2) holds true for any θ ∈ C∞c (R) with small enough support around r.
Let us take such a function θ that is also identically 1 on some open interval I ′
centered at r. If r = E, let r0 = r = E, else let r0 < r such that r0 ∈ I ′. We set
r0 = t20 + E with t0 ≥ 0. We take t1 > 0 such that r1 := (t0 + t1)2 + E > r and
r1 ∈ I ′. We may assume that t1 ≤ 1.
For λ ≥ 0, let F : Rd −→ R be defined by F (x) = t0〈x〉 + λ ln(1 + t1λ

−1〈x〉). By
the definition of r, we know that 〈Q〉λet0〈Q〉ψ ∈ L2(Rd) (if r = E i.e. t0 = 0, this
follows from Proposition 5.1). Thus ψ belongs to the domain of the multiplication
operator eF (Q). We define ψF = eF (Q)ψ and Ψλ = ‖ψF ‖−1ψF . By the end of the
proof of Proposition 5.1, we can show that ∇ψF belongs to the domain of 〈Q〉.
Thus ψF ∈ D(A), therefore the expectation value 〈ψF , [H, iA]ψF 〉 is well defined,
and a direct computation gives

(7.1)
〈
ψF , [H, iA]ψF

〉
= −4 ·

∥∥g(Q)1/2AψF
∥∥2

+
〈
ψF , G(Q)ψF

〉
,

where g is defined by F (x) = g(x)x and G(x) = ((Q.P )2g)(x) − (Q.P |∇F |2)(x).
Uniformly w.r.t. λ ≥ 1, |∇F (x)| = O(〈x〉0) and the matrix norm |(∇⊗∇)F (x)| =
O(〈x〉−1). Notice that e(t0+t1)〈Q〉ψ 6∈ L2(Rd). As in [FH], we can show that λ 7→ Ψλ,
λ 7→ ∇Ψλ, and λ 7→ H0Ψλ are bounded for the L2(Rd)-norm and tend to 0 weakly
in L2(Rd), as λ→ +∞. This implies, in particular, that, for any δ > 0,

(7.2) lim
λ→+∞

∥∥〈Q〉−δΨλ

∥∥ = 0 and lim
λ→+∞

∥∥〈Q〉−δ∇Ψλ

∥∥ = 0 .

Since |G(x)| = O(〈x〉−1) + t1(t0 + t1), uniformly w.r.t. λ ≥ 1, we derive from (7.1)
and (7.2) that

(7.3) lim sup
λ→+∞

〈Ψλ, [H, iA]Ψλ〉 ≤ t1(t0 + t1) .

Now, we claim that

(7.4) sup
λ≥1

∣∣〈Ψλ, [H, iA]Ψλ〉
∣∣ < +∞ .

Thanks to (7.4), we can follow the arguments of [FH] to get the desired contradiction
for small enough t1.
We are left with the proof of (7.4). The form 〈P 〉−2[H−Wαβ(Q), iA]〈P 〉−2 extends
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to a bounded one, by Section 3. Since the family (〈P 〉2Ψλ)λ≥1 is bounded, so is
also (|〈Ψλ, [H −Wαβ(Q), iA]Ψλ〉|))λ≥1.
In the case |α− 1|+ β > 1, the form 〈P 〉−2[H, iA]〈P 〉−2 also extends to a bounded
one, by Section 3 and Remark 1.6. Thus we get the bound (7.4).
Now assume that |α − 1| + β ≤ 1 and α > 1. In this case, the form (f, g) 7→
〈Wαβ(Q)f, iAg〉 is not bounded from H2 to H−2 (cf. Section 3). To get the result,
we shall use the fact that ψ is localised w.r.t. H at energy E and “move” this
property through the eF (Q) factors appearing in (7.4).
To get the boundedness of (|〈Ψλ, [Wαβ(Q), iA]Ψλ〉|)λ≥1, it suffices to show

(7.5) sup
λ≥1

∣∣〈Wαβ(Q)Ψλ, Q · PΨλ〉
∣∣ < +∞ .

Since V (Q) is H0-compact, there exists some c0 > 0 such that H ≥ −c0. For
m > c0, m + H is invertible with bounded inverse. Recall that H(F ) is defined
in (5.1). Let H0(F ) = eF (Q)H0e

−F (Q). Since |∇F (x)| = O(〈x〉0), uniformly w.r.t.
λ ≥ 1, we can find m > 0 large enough such that, for all λ ≥ 1, m + H(F ) and
m + H0(F ) are invertible with uniformly bounded inverse. Moreover, we see that
V (Q)(m+H(F ))−1 and V (Q)(m+H0(F ))−1 are uniformly bounded.
For λ ≥ 1, F stays in a bounded set of the symbol class S(1; g) (see Appendix A
for details). Thus, by pseudodifferential calculus, 〈P 〉2(m+H0(F ))−1 is uniformly
bounded. By the resolvent formula, so is also 〈P 〉2(m+H(F ))−1.
Since H0 ∈ C1(〈Q〉) and H ∈ C1(〈Q〉) by Lemma 3.1, since F is smooth, H0(F ) ∈
C1(〈Q〉) and H(F ) ∈ C1(〈Q〉). Using Propositions C.3 and C.4, we see that, for
ε ∈ [0; 1], 〈Q〉ε(m + H0(F ))−1〈Q〉−ε and 〈Q〉ε(m + H(F ))−1〈Q〉−ε are bounded,
uniformly w.r.t. λ ≥ 1.
For ` ∈ N, we can write ψ = (m+ E)`(m+H)−`ψ. By a direct computation,

eF (Q)(m+H)−1e−F (Q) = (m+H(F ))−1 .

Thus, for `1, `2 ∈ N,

〈Wαβ(Q)Ψλ, Q · PΨλ〉

= (m+ E)`1+`2
〈
QWαβ(Q)

(
m+H(F )

)−`1
Ψλ , P

(
m+H(F )

)−`2
Ψλ

〉
.(7.6)

In (7.6), we write(
m+H(F )

)−`1
=
((
m+H0(F )

)−1 −
(
m+H0(F )

)−1
V (Q)

(
m+H(F )

)−1
)`1

,(
m+H(F )

)−`2
=
((
m+H0(F )

)−1
+
(
m+H(F )

)−1
V (Q)

(
m+H0(F )

)−1
)`2

,

and expand the products. The expansion contains, up to the factor (m+ E)`1+`2 ,
terms of the form

(7.7)
〈
QWαβ(Q)

(
m+H0(F )

)−1
V (Q)

(
m+H(F )

)−1
B1Ψλ , B2Ψλ

〉
,

where B1 and B2 are uniformly bounded operators. By Assumption 1.5, 〈Q〉1−β−βlr
is bounded. For W = Vsr, W = Vlr, and W = Wαβ , 〈Q〉βlrW (Q) is bounded. Since,
by the resolvent formula,

〈Q〉βlrVc(Q)(m+H(F ))−1

= 〈Q〉βlrχc(Q)Vc(Q)〈P 〉−2〈P 〉2(m+H0(F ))−1

− 〈Q〉βlrχc(Q)Vc(Q)〈P 〉−2〈P 〉2(m+H0(F ))−1V (m+H(F ))−1 ,
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the operator 〈Q〉βlrVc(Q)(m+H(F ))−1 is uniformly bounded. Furthermore,

〈Q〉βlr (m+H0(F ))−1(v · ∇Ṽsr)(Q)(m+H(F ))−1

= 〈Q〉βlr (m+H0(F ))−1(v(Q) · iP )〈Q〉−βlr · 〈Q〉βlr Ṽsr(Q)(m+H(F ))−1

− 〈Q〉βlr (m+H0(F ))−1〈Q〉−βlr · 〈Q〉βlr Ṽsr(Q) · (v(Q) · iP )(m+H(F ))−1 ,

so it is also uniformly bounded. Therefore all the terms of the form (7.7) are
bounded, uniformly w.r.t. λ ≥ 1. Up to the factor (m + E)`1+`2 , the previous
expansion contains also terms of the form

(7.8)
〈
QWαβ(Q)B′1Ψλ , P

(
m+H(F )

)−1
V (Q)

(
m+H0(F )

)−1
B′2Ψλ

〉
,

for uniformly bounded operators B′1 and B′2. We note that 〈Q〉βlrP 〈Q〉−βlr 〈P 〉−1

is bounded and that 〈Q〉βlr 〈P 〉1(m + H(F ))−1〈Q〉−βlr is uniformly bounded, use
again the above arguments to conclude that all the terms of the form (7.8) are
bounded functions of λ. We are left with the term

(m+ E)`1+`2
〈
QWαβ(Q)

(
m+H0(F )

)−`1
Ψλ , P

(
m+H0(F )

)−`2
Ψλ

〉
.

By pseudodifferential calculus,

〈P 〉2`1(m+H0(F ))−`1 and 〈P 〉2`2−1P (m+H0(F ))−`2

are uniformly bounded. Thus, by Proposition 2.4, this last term is bounded, if we
choose `1 and `2 large enough. This proves (7.5) and therefore (7.4). �

Remark 7.2. In the second part of the above proof, we used the assumption α > 1
to get (7.5). Indeed, we managed to move a ”localisation” (m+H)−` through the
multiplication operator eF (Q), creating in this way the factors 〈P 〉−`1 and 〈P 〉−`2 .
Then we applied Proposition 2.4 that only holds true for α > 1 (see Remark 2.5).
In the case α = 1, it is natural to try to move an appropriate localisation θ(H)
through eF (Q) and then use Proposition 2.1. We do not know how to bound the
operator eF (Q)θ(H)e−F (Q) uniformly w.r.t. λ, when θ is smooth and compactly
supported. Formally, eF (Q)θ(H)e−F (Q) = θ(H(F )) where H(F ) = eF (Q)He−F (Q),
but the latter is not self-adjoint (see (5.1)).

Remark 7.3. In the case α = β = 1, the Mourre estimate is valid at high energy,
say on any compact interval included in some [a; +∞[ with a > 0 (cf. the proof of
Proposition 4.6). Take an energy E > a and ψ ∈ D(H) such that Hψ = Eψ. The
proof of Theorem 2.1 in [FH] works in this situation and yields the conclusion of
Proposition 7.1, namely r = +∞.

8. Eigenfunctions cannot satisfy unlimited exponential bounds.

In this section, we work under Assumption 1.1 with |α−1|+β > 1 or with β ≥ 1/2
and |α− 1|+ β ≤ 1, but, in contrast to Section 7, we impose some lower bound on
the form [V (Q), iA]. Again, we study the states ψ ∈ D(H) such that Hψ = Eψ, for
some E ∈ R, but also assume that ψ belongs to the domain of the multiplication
operator eγ〈Q〉, for all γ ≥ 0. We shall show that such ψ must be zero. Our proof is
inspired by the corresponding result in [FHHH2] (see also Theorem 4.18 in [CFKS]).
In fact, when |α−1|+β > 1, we just apply [FHHH2]. Our new contribution concerns
the case where α > 1, 1 ≥ β ≥ 1/2, and α+β ≤ 2. In that case, that is not covered
by the result in [FHHH2], we still arrive at the same conclusion using an appropriate
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bound on the contribution of the oscillating potential Wαβ to the commutator form
[H, iA]. This provides in particular a proof of Theorem 1.14.

Under Assumption 1.1, we demand, unless |α − 1| + β > 1, that β ≥ 1/2. We

require further, as in [FHHH2], that the form [(Vc + v · ∇Ṽsr)(Q), iA] is H0-form-
lower-bounded with relative bound less than 2. Precisely, we demand that

∃εc > 0 , ∃λc > 0 ; ∀ϕ ∈ D(H) ∩ D(A) ,(8.1)

〈ϕ,
[
(Vc + v · ∇Ṽsr)(Q), iA

]
ϕ〉 ≥ (εc − 2)〈ϕ,H0ϕ〉 − λc‖ϕ‖2 .

We shall need the following known

Lemma 8.1. Under the previous assumptions,

∀δ ∈]0; 1[ , ∃µδ > 0 ; ∀ϕ ∈ D(H) ∩ D(A) ,

〈ϕ,H0ϕ〉 ≥ δ〈ϕ,Hϕ〉 − µδ‖ϕ‖2 .(8.2)

∀ε > 0 , ∃λε > 0 ; ∀ϕ ∈ D(H) ∩ D(A) ,

〈ϕ, [H −Wαβ(Q), iA]ϕ〉 ≥ (εc − ε)〈ϕ,H0ϕ〉 − λε‖ϕ‖2 .(8.3)

Proof. Since V (Q) is H0-compact, it is H0-bounded with relative bound 0. This
implies (8.2) (see [K]). Recall that the form [Vsr(Q) + Vlr(Q), iA] is compact from
H1 to H−1 (cf . (cf. (3.3), (3.4), (3.5)). Thus it is H0 form bounded with relative
bound 0. Take ε > 0. There exists µε > 0 such that, for all ϕ ∈ D(H) ∩ D(A),∣∣〈ϕ, [Vsr(Q) + Vlr(Q), iA]ϕ〉

∣∣ ≤ ε〈ϕ,H0ϕ〉 + µε‖ϕ‖2 .
Therefore, for such ϕ, the l.h.s. of (8.3) is

≥ (2− ε+ εc − 2)〈ϕ,H0ϕ〉 − (λc + µε)‖ϕ‖2 ,
by (8.1). This yieds (8.3) with λε = λc + µε. �

As in Section 7, we shall use a conjugaison by an appropriate eF (Q). For γ > 0,
let F : Rd −→ R be the smooth function defined by F (x) = γ〈x〉. Setting g(x) =
γ〈x〉−1, ∇F (x) = g(x)x and

(8.4)
∣∣∇F (x)

∣∣2 = γ2
(
1 − 〈x〉−2

)
.

A direct computation gives(
(Q.P )2g

)
(x) = γ〈x〉−1

(
1 − 〈x〉−2

)(
1 − 3〈x〉−2

)
,(8.5)

−
(
(Q.P )(|∇F |2)

)
(x) = −2γ2〈x〉−2

(
1 − 〈x〉−2

)
≤ 0 .(8.6)

Proposition 8.2. Assume Assumption 1.1 and (8.1). Unless |α− 1|+β > 1, take
β ≥ 1/2. Unless α+ β ≤ 2 or β ≥ 1/2, take |w| small enough. Let ψ ∈ D(H) and
E ∈ R such that Hψ = Eψ. Assume further that, for all γ ≥ 0, ψ belongs to the
domain of the multiplication operator eγ〈Q〉. Then ψ = 0.

Remark 8.3. Note that Proposition 8.2 applies under (8.1) and Assumptions 1.1
and 1.5. In particular, the case α = 1 is allowed.

Proof of Proposition 8.2. First of all, we focus on the cases where a result in
[FHHH2] applies. Assume that β > 1 or α < β ≤ 1. We use Remark 1.6 to derive,
thanks to (8.3), the following property: for any ε > 0, there exists λε > 0, such
that, for all ϕ ∈ D(H) ∩ D(A),

(8.7) 〈ϕ, [V, iA]ϕ〉 ≥ (εc − ε)〈ϕ,H0ϕ〉 − λε‖ϕ‖2 .
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Therefore [FHHH2] applies.
Assume now that α + β > 2 and β ≤ 1. Again by Remark 1.6, we know that the
form [Wαβ(Q), iA] extends to a bounded one from H2 to H−2. Thus, for |w| small
enough, (8.7) still holds true and [FHHH2] applies.
Now, we treat the last case: |α − 1| + β ≤ 1 and β ≥ 1/2. We always consider
γ ≥ 1. By assumption, ψ belongs to the domain of the multiplication operator
eF (Q). Setting ψF = eF (Q)ψ, we claim that

(8.8)
∣∣〈ψF , [Wαβ(Q), iA]ψF

〉∣∣ ≤ ∥∥g(Q)1/2AψF
∥∥2

+ |w|2γ−1‖ψF ‖2 .

From the definition of the form [Wαβ(Q), iA], we observe that∣∣〈ψF , [Wαβ(Q), iA]ψF
〉∣∣ ≤ 2|w| ·

∥∥g(Q)1/2AψF
∥∥ · ∥∥g(Q)−1/2〈Q〉−βψF

∥∥
≤ 2|w| ·

∥∥g(Q)1/2AψF
∥∥ · γ−1/2 ·

∥∥〈Q〉1/2−βψF∥∥
≤ 2 ·

∥∥g(Q)1/2AψF
∥∥ · γ−1/2|w| ·

∥∥ψF∥∥
since we assumed that β ≥ 1/2. Now (8.8) follows from the use of the inequality
2ab ≤ a2 + b2, for a, b ≥ 0.
Now, we essentially follows the argument in the proof of Theorem 4.18 in [CFKS]
and prove the result by contradiction. Assume that ψ 6= 0. Let ψF = eF (Q)ψ. The
formula (7.1) is valid with the new function F . As in the proof of Proposition 5.1,
we also have

(8.9) 〈ψF , HψF 〉 =
〈
ψF ,

(
|∇F |2(Q) + E

)
ψF
〉
.

Combining (7.1) and (8.8), we get, for γ ≥ 1,〈
ψF , [H −Wαβ(Q), iA]ψF

〉
≤ −3 ·

∥∥g(Q)1/2AψF
∥∥2

+ |w|2γ−1‖ψF ‖2

+ 〈ψF , G(Q)ψF 〉〈
ψF , [H −Wαβ(Q), iA]ψF

〉
≤ 〈ψF , G(Q)ψF 〉 + |w|2γ−1‖ψF ‖2 ,(8.10)

where G(Q) = (Q.P )2g − (Q.P )(|∇F |2). Next we deduce from (8.3) and (8.2) in
Lemma 8.1, and (8.9), that, for all δ ∈]0; εc[, there exist some ρδ, ρ

′
δ > 0 such that,

for all γ ≥ 1,〈
ψF , [H −Wαβ(Q), iA]ψF

〉
≥ δ〈ψF , H0ψF 〉 − ρδ‖ψF ‖2

≥ 2−1δ
(
〈ψF , HψF 〉 − 2µ1/2

)
− ρδ‖ψF ‖2

≥ 2−1δ〈ψF , (H − E)ψF 〉 − ρ′δ‖ψF ‖2

≥ 2−1δ
〈
ψF , |∇F |2(Q)ψF

〉
− ρ′δ‖ψF ‖2 .(8.11)

In view of (8.4), we introduce the function f : [0; +∞[→ [0; +∞[ given by

(8.12) f(γ) =
〈
ψF ,

(
1 − 〈Q〉−2

)
ψF
〉

= γ−2
〈
ψF , |∇F |2(Q)ψF

〉
.

Since ψ 6= 0, we can find ε > 0 such that ‖1I|·|≥2ε(Q)ψ‖ > 0. For all γ ≥ 0,∥∥1I|·|≤ε(Q)eγ〈Q〉ψ
∥∥2∥∥eγ〈Q〉ψ∥∥2 ≤

e2γ〈ε〉
∥∥1I|·|≤ε(Q)ψ

∥∥2

e2γ〈2ε〉
∥∥1I|·|≥2ε(Q)ψ

∥∥2 ≤ e2γ(〈ε〉−〈2ε〉) ‖ψ‖2

‖1I|·|≥2ε(Q)ψ‖2
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and

f(γ) ≥
(
1 − 〈ε〉−2

)∥∥1I|·|≥ε(Q)ψF
∥∥2

≥
(
1 − 〈ε〉−2

)
·
(
‖ψF ‖2 −

∥∥1I|·|≤ε(Q)eγ〈Q〉ψ
∥∥2
)

≥
(
1 − 〈ε〉−2

)
· ‖ψF ‖2 ·

(
1 − Cεe

2γ(〈ε〉−〈2ε〉)
)
,

where Cε := ‖ψ‖2 · ‖1I|·|≥2ε(Q)ψ‖−2. Thus, there exist C > 0 and Γ ≥ 1 such that,
for γ ≥ Γ,

(8.13) f(γ) ≥ C ‖ψF ‖2 ≥ C ‖ψ‖2 > 0 .

We derive from (8.10) and (8.11), thanks to (8.12) and (8.6), that, for all γ ≥ 1,

2−1δγ2f(γ) −
(
ρ′δ+ |w|2γ−1

)
‖ψF ‖2 ≤

〈
ψF , G(Q)ψF

〉
≤
〈
ψF ,

(
(Q.P )2g

)
(Q)ψF

〉
.

By (8.5), ((Q.P )2g)(x) ≤ γ(1− 〈x〉−2), for all x ∈ Rd, yielding, for all γ ≥ Γ,

2−1δγ2f(γ) −
(
ρ′δ + |w|2γ−1

)
‖ψF ‖2 ≤ γf(γ)

and
(
2−1δγ2 − γ − (ρ′δ + |w|2γ−1)C−1

)
· f(γ) ≤ 0 ,

by (8.13). We get a contradiction for γ large enough. �

9. LAP at suitable energies.

In this section, we prove the limiting absorption principle for H for appropriate
energy regions. As already pointed out in [GJ2] and in Section 3, one cannot use
the usual Mourre theory w.r.t. the generator of dilations A, since the Hamiltonian
is not regular enough w.r.t. A. For the same reason, one cannot follow the lines in
[Gé]. As explained in Remark 3.3, we were not able to apply the “weighted Mourre
theory” developed in [GJ2], which is inspired by [Gé] and is a kind of “localised”
Putnam argument. Instead, we follow the more complicated path introduced in
[GJ1].

To prepare our result, we need some notation. For δ > 0 and y ∈ Rd, we set

(9.1) gδ(y) =
(
2 − 〈y〉−δ

)
〈y〉−1y .

Let χ ∈ C∞c (R) with χ(t) = 1 if and only if |t| ≤ 1 and suppχ ⊂ [−2; 2]. Let
χ̃ = 1− χ. For R ≥ 1 and t ∈ R, we set χR(t) = χ(t/R) and χ̃R(t) = χ̃(t/R). We
also set gδ,R(y) = χ̃R(〈y〉)2gδ(y). Recall that we set βlr = min(ρlr, β).

First, we show a kind of weighted Mourre estimate at infinity for the position
operators Q (meaning for large |Q|), which can be seen as an energy localised (i.e.
localised in H) Putnam positivity, that is also localised in |Q| at infinity. It should
be compared with Section 2 in [La1].

Proposition 9.1. Assume Assumption 1.1. Under Assumption 4.1, take any com-
pact interval I ′ ⊂ J̊ , the interior of J . Let δ be a small enough positive number
(depending only on the potential) and s = (1+ δ)/2. There exist c1 > 0 and R1 > 1
such that, for R ≥ R1, there exists a bounded, self-adjoint operator BR such that,
for f ∈ L2(Rd) with EI′(H)f = f , we have the estimate:〈

f , [H, iBR] f
〉
≥ c1

∥∥χ̃R(〈Q〉)〈Q〉−sf
∥∥2 − O

(
R−γ

)∥∥χ̃R(〈Q〉)〈Q〉−sf
∥∥

−O
(
R−γ−1

)
,(9.2)
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with γ = 1− δ > 1/2, if |α− 1|+ β > 1, else γ = β − δ > 1/2. Here

BR = gδ,R(Q) · P + P · gδ,R(Q) .

The ”O” terms in the estimate can be chosen independent of f when f stays in a
bounded set for the norm ‖〈Q〉−s · ‖.

Remark 9.2. In fact, we can give a precise upper bound on δ in Proposition 9.1.
We demand that δ < min(β; ρsr; ρ

′
lr; 1/2). In the case where α ≥ 1 and α+ β ≤ 2,

we know that β + βlr > 1 and β > 1/2, by Assumption 4.1, and we further require
that δ < min(β + βlr − 1;β − 1/2).
Denoting by c the infimum of J , one can take c1 = δc/2 in (9.2).

Proof. We choose δ according to Remark 9.2. We take f satisfying EI′(H)f = f
and belonging to some fix bounded set for the norm ‖〈Q〉−s · ‖. Let θ ∈ C∞c (R;R)

such that θ = 1 on I ′ and supp θ ⊂ J̊ . We have θ(H)f = f . Take R1 large enough
such that, for R ≥ R1, χ̃RVc = 0. In particular,

〈f , [Vc(Q) , iBR]f〉 = 2〈Vc(Q)f , gδ,R(Q) · iPf〉 + 2〈gδ,R(Q) · iPf , Vc(Q)f〉 = 0 .

The other contributions of the potential are given by

〈f , [Vlr(Q), iBR]f〉 = −〈f , (gδ,R · ∇Vlr)(Q)f〉
〈f , [Vsr(Q), iBR]f〉 = 2<〈iPf , Vsr(Q)gδ,R(Q)f〉 ,
〈f , [Wαβ(Q), iBR]f〉 = 2<〈iPf , Wαβ(Q)gδ,R(Q)f〉 ,

and

〈f ,
[
(v · ∇Ṽsr)(Q), iBR

]
f〉 = 2<〈iPf , (v · ∇Ṽsr)(Q)gδ,R(Q)f〉

= 2<〈iPf , [v(Q) · iP , Ṽsr(Q)]gδ,R(Q)f〉
= 2<〈(P · v(Q))Pf , Ṽsr(Q)gδ,R(Q)f〉
− 2<〈Ṽsr(Q)Pf , (v(Q) · P )gδ,R(Q)f〉

= 2<〈(v(Q) · P )Pf , Ṽsr(Q)gδ,R(Q)f〉(9.3)

+ 2<〈(∇ · v)(Q)Pf , iṼsr(Q)gδ,R(Q)f〉
− 2<〈Ṽsr(Q)Pf , gδ,R(Q)(v(Q) · P )f〉
+ 2<〈Ṽsr(Q)Pf , i(v · ∇gδ,R)(Q)f〉 .

Note that the term 〈f , (gδ,R · ∇Vlr)(Q)f〉 is O(R−ε)‖χ̃R(〈Q〉)〈Q〉−sf‖2, for ε =
ρ′lr − δ > 0. We shall evaluate the size of the other terms. To this end, we shall
repeatedly make use of Lemma C.5, of Lemma C.6 and of the fact that the term
‖〈Q〉−sf‖ stays in a bounded region, for the considered f . Note that those lemmata
follow from the regularity of H w.r.t. 〈Q〉.
Writing

〈(Vsrgδ,R)(Q)f , iPf〉
= 〈(Vsrgδ,R)(Q)f , iPθ(H)f〉
=

〈
〈Q〉s(Vsrgδ)(Q)χ̃R(〈Q〉)〈Q〉−sf ,

[
χ̃R(〈Q〉) , iPθ(H)

]
〈Q〉s · 〈Q〉−sf

〉
+
〈
〈Q〉2s(Vsrgδ)(Q)χ̃R(〈Q〉)〈Q〉−sf , 〈Q〉−siPθ(H)〈Q〉s · χ̃R(〈Q〉)〈Q〉−sf

〉
,

the first term is O(Rδ−1−ρsr )‖χ̃R(〈Q〉)〈Q〉−sf‖ and the second term is at most
of size O(Rδ−ρsr )‖χ̃R(〈Q〉)〈Q〉−sf‖2, by Lemma C.6. Notice that O(Rδ−1−ρsr ) =
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O(R−γ) and that δ − ρsr < 0.
Using that

χ̃R(〈Q〉)Pf = χ̃R(〈Q〉)Pθ(H)f

= [χ̃R(〈Q〉) , Pθ(H)]〈Q〉s · 〈Q〉−sf(9.4)

+ 〈Q〉s · 〈Q〉−sPθ(H)〈Q〉s · χ̃R(〈Q〉)〈Q〉−sf ,
we see that the second term in (9.3) is

O(Rδ−1−ρsr )‖χ̃R(〈Q〉)〈Q〉−sf‖ + O(Rδ−ρsr )‖χ̃R(〈Q〉)〈Q〉−sf‖2

and the fourth term is even better. For the third term, we use (9.4) twice to see
that it is

O(Rδ−2−ρsr ) + O(Rδ−1−ρsr )‖χ̃R(〈Q〉)〈Q〉−sf‖ + O(Rδ−ρsr )‖χ̃R(〈Q〉)〈Q〉−sf‖2 .
Note that O(Rδ−2−ρsr ) = O(R−γ−1).
To evaluate the contribution of Wαβ , we use Remark 1.6. If 1 < β, then we can
treat this contribution as the one of Vsr. If β ≤ 1 and α < β, then it is treated
as the one of Vlr. If β ≤ 1 and α + β > 2, we follow the above treatment of the
contribution of v · ∇Ṽsr. Thus, we are left with the case α ≥ 1 ≥ β and α+ β ≤ 2.
By Assymption 4.1, β + βlr > 1 and, by Remark 9.2, β + βlr > 1 + δ. We write

〈Wαβgδ,R(Q)f , iPf〉
= 〈χ̃R(〈Q〉)2Wαβgδ(Q)θ(H)f , iPθ(H)f〉
= 〈χ̃R/2(〈Q〉)Wαβgδ(Q)θ(H)χ̃R(〈Q〉)f , iPθ(H)χ̃R(〈Q〉)f〉

+ 〈χ̃R/2(〈Q〉)Wαβgδ(Q)θ(H)χ̃R(〈Q〉)f , [χ̃R(〈Q〉), iPθ(H)]f〉
+ 〈χ̃R/2(〈Q〉)Wαβgδ(Q)[χ̃R(〈Q〉), θ(H)]f , iPθ(H)χ̃R(〈Q〉)f〉
+ 〈χ̃R/2(〈Q〉)Wαβgδ(Q)[χ̃R(〈Q〉), θ(H)]f , [χ̃R(〈Q〉), iPθ(H)]f〉 .

The second and third terms are O(Rδ−β)‖χ̃R(〈Q〉)〈Q〉−sf‖ and the last term is
O(Rδ−1−β), by Lemma C.6.
We now focus on the first term. We write

〈χ̃R/2(〈Q〉)Wαβgδ(Q)θ(H)χ̃R(〈Q〉)f , iPθ(H)χ̃R(〈Q〉)f〉(9.5)

= 〈χ̃R/2(〈Q〉)Wαβgδ(Q)θ(H0)χ̃R(〈Q〉)f , iPθ(H0)χ̃R(〈Q〉)f〉
+ 〈χ̃R/2(〈Q〉)Wαβgδ(Q)

(
θ(H)− θ(H0)

)
χ̃R(〈Q〉)f , iPθ(H0)χ̃R(〈Q〉)f〉

+ 〈χ̃R/2(〈Q〉)Wαβgδ(Q)θ(H0)χ̃R(〈Q〉)f , iP
(
θ(H)− θ(H0)

)
χ̃R(〈Q〉)f〉

+ 〈χ̃R/2(〈Q〉)Wαβgδ(Q)
(
θ(H)− θ(H0)

)
χ̃R(〈Q〉)f ,
iP
(
θ(H)− θ(H0)

)
χ̃R(〈Q〉)f〉 .

By Lemma C.5, the second and third terms on the r.h.s. of (9.5) are at most
of size O(Rδ+1−β−βlr )‖χ̃R(〈Q〉)〈Q〉−sf‖2, whereas the fourth one is seen to be
O(Rδ+1−β−2βlr )‖χ̃R(〈Q〉)〈Q〉−sf‖2. We write the first one as

〈χ̃R/2(〈Q〉)Wαβgδ(Q)θ(H0)χ̃R(〈Q〉)f , iPθ(H0)χ̃R(〈Q〉)f〉
= 〈Wαβ

[
χ̃
R/2(〈Q〉)gδ(Q), θ(H0)

]
χ̃R(〈Q〉)f , iPθ(H0)χ̃R(〈Q〉)f〉

+ 〈Wαβθ(H0)gδ(Q)χ̃R(〈Q〉)f , iPθ(H0)χ̃R(〈Q〉)f〉 .

By the above arguments, the first term on the r.h.s is O(Rδ−β)‖χ̃R(〈Q〉)〈Q〉−sf‖2.
So is also the last term by Propositions 2.1 and 2.4.
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We are left with the contribution of H0 in the l.h.s. of (9.2). A direct computation
gives [H0, iBR] = PT · Gδ,R · P − hδ,R where the entries of the d× d-matrix valued
function Gδ,R on Rd are given by

∂k
(
χ̃R(〈·〉)2(gδ)j

)
(y) .

Here gδ(y) = ((gδ)1(y), · · · , (gδ)d(y))T and T denotes the transposition. The real
valued function hδ,R on Rd is given by

hδ,R(y) =
∑

1≤j,k≤d

∂3
kkj

(
χ̃R(〈·〉)2(gδ)j

)
(y) .

The contribution of hδ,R to (9.2) is seen to be O(Rδ−2) = O(R−γ−1). Since

∂k
(
χ̃R(〈·〉)2(gδ)j

)
(y) = χ̃R(〈y〉)2∂k

(
(gδ)j

)
(y) + 2(2−〈y〉−δ)χ̃R(〈y〉)χ̃′R(〈y〉)yjyk

〈y〉2
,

2(2− 〈·〉−δ)χ̃R(〈·〉)χ̃′R(〈·〉) ≥ 0, and the matrix (yjyk〈y〉−2)1≤j,k≤d is nonnegative,〈
f , PT · Gδ,R · P f

〉
≥
〈
f , PT · χ̃R(〈Q〉)2Gδ(Q) · P f

〉
where the entries of the d × d-matrix valued function Gδ on Rd are given by
∂k((gδ)j)(y). For y ∈ Rd, Gδ(y) is the sum of two nonnegative matrices, namely

Gδ(y) =

(
2− 〈y〉−δ

)
〈y〉

(
δjk −

yjyk
〈y〉2

)
1≤j,k≤d

+
δ

〈y〉1+δ

(yjyk
〈y〉2

)
1≤j,k≤d

≥ δ

〈y〉1+δ

(
δjk −

yjyk
〈y〉2

)
1≤j,k≤d

+
δ

〈y〉1+δ

(yjyk
〈y〉2

)
1≤j,k≤d

≥ δ

〈y〉1+δ
Id ,

where Id is the d× d identity matrix. This yields〈
f , PT · Gδ,R · P f

〉
≥ δ

〈
f , PT · χ̃R(〈Q〉)2〈Q〉−2sP f

〉
.

We write 〈
f , PT · χ̃R(〈Q〉)2〈Q〉−2sP f

〉
=

〈
θ(H)f , PT · χ̃R(〈Q〉)2〈Q〉−2sP θ(H)f

〉
=

〈
f ,
[
θ(H)PT , χ̃R(〈Q〉)〈Q〉−s

]
·
[
χ̃R(〈Q〉)〈Q〉−s, Pθ(H)

]
f
〉

+
〈
f ,
[
θ(H)PT , χ̃R(〈Q〉)〈Q〉−s

]
· Pθ(H)χ̃R(〈Q〉)〈Q〉−s f

〉
+
〈
χ̃R(〈Q〉)〈Q〉−sf , θ(H)PT ·

[
χ̃R(〈Q〉)〈Q〉−s, Pθ(H)

]
f
〉

+
〈
χ̃R(〈Q〉)〈Q〉−sf , θ(H)H0θ(H) χ̃R(〈Q〉)〈Q〉−sf

〉
.

By Lemma C.6, the first term is O(R−2) = O(R−γ−1), the second and third ones
are O(R−1)‖χ̃R(〈Q〉)〈Q〉−sf‖, thus also O(R−γ)‖χ̃R(〈Q〉)〈Q〉−sf‖. Writing H0 =
H − V in the last term and using the fact that θ(H)V 〈Q〉βlr is bounded, this last
term is

≥ c‖θ(H)χ̃R(〈Q〉)〈Q〉−sf‖2 − O
(
R−βlr

)
‖χ̃R(〈Q〉)〈Q〉−sf‖2 ,
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where c is the infimum of J . Now, we write

‖θ(H)χ̃R(〈Q〉)〈Q〉−sf‖2

=
〈[
θ(H), χ̃R(〈Q〉)〈Q〉−s

]
f ,
[
θ(H), χ̃R(〈Q〉)〈Q〉−s

]
f
〉

+
〈[
θ(H), χ̃R(〈Q〉)〈Q〉−s

]
f , χ̃R(〈Q〉)〈Q〉−sf

〉
+
〈
χ̃R(〈Q〉)〈Q〉−sf ,

[
θ(H), χ̃R(〈Q〉)〈Q〉−s

]
f
〉

+ ‖χ̃R(〈Q〉)〈Q〉−sf‖2 .

By Lemma C.6 again, the first term is O(R−2) = O(R−γ−1), the second and third
ones are O(R−1)‖χ̃R(〈Q〉)〈Q〉−sf‖ = O(R−γ)‖χ̃R(〈Q〉)〈Q〉−sf‖. Gathering all the
previous estimates and taking R1 large enough, we get (9.2) with c1 = δc/2. �

Now we are in position to prove our first main result, namely Theorem 1.8. To
this end, we use the characterization of the LAP in terms of so called “special
sequences”, that was introduced in [GJ1].

Proof of Theorem 1.8. Without loss of generality, the length of I may be assumed
small enough. In particular, we can find a compact interval J satisfying Assump-
tion 4.1 such that I ⊂ J̊ . Since the validity of (1.4) for some s > 1/2 implies
the validity of (1.4) for any s′ ≥ s, we may choose s > 1/2 as close to 1/2 as we

want. Let θ ∈ C∞c (R;R) such that θ = 1 on I and supp θ ⊂ J̊ . By Proposition 4.6,
(4.2) holds true. Multiplying each term on both sides by χ(H)Π⊥, with χθ = χ,
and shriking the size of the support of χ so much that ‖Kχ(H)Π⊥‖ ≤ c, we get
(4.2) with 2c replaced by c, θ(H) replaced by χ(H)Π⊥, and K = 0. This can be
done with the requirement that χ = 1 on a small compact interval. Therefore we
may assume that, for I, J , and θ, as above, we have the following strict, projected
Mourre estimate

(9.6) Π⊥θ(H)[H, iA]θ(H)Π⊥ ≥ c θ(H)2Π⊥ .

Recall that θ(H) ∈ C∞(〈Q〉) and θ(H)Π ∈ C∞(〈Q〉), by Lemma 3.1 and by Corol-
lary 6.3, respectively. Thus θ(H)Π⊥ ∈ C∞(〈Q〉) and we can apply Proposition 3.2
in [GJ2]. Therefore the LAP (1.4) is equivalent to the following statement:
Take a sequence (fn, zn)n∈N such that, for all n, zn ∈ C, <zn ∈ I, =zn 6= 0,
fn ∈ D(H), Π⊥fn = fn, θ(H)fn = fn, and (H − zn)fn ∈ D(〈Q〉s). Assume further
that =zn → 0, ‖〈Q〉s(H−zn)fn‖ → 0, and that (‖〈Q〉−sfn‖)n∈N converges to some
real number η. Then η = 0.
We shall prove this statement. Let us consider such a sequence (fn, zn)n∈N. Take
R ≥ 1. Notice that χR(〈Q〉)fn actually belongs to D(H) ∩ D(〈Q〉). Note also
that the operator A⊥ := Π⊥θ(H)Aθ(H)Π⊥ is well-defined on D(〈Q〉), since Pθ(H)
is bounded and preserves, together with θ(H) and Π⊥, the set D(〈Q〉). Since H
commutes with θ(H)Π⊥, we derive from (9.6) applied to χR(〈Q〉)fn that

(9.7)
〈
χR(〈Q〉)fn , [H, iA⊥]χR(〈Q〉)fn

〉
≥ c

∥∥θ(H)Π⊥χR(〈Q〉)fn
∥∥2
.

Since θ(H)Π⊥ is smooth w.r.t. 〈Q〉,

θ(H)Π⊥χR(〈Q〉)fn = χR(〈Q〉)fn +
[
θ(H)Π⊥, χR(〈Q〉)

]
〈Q〉s · 〈Q〉−sfn

= χR(〈Q〉)fn + O
(
Rs−1

)
,
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thanks to Lemma C.6. The above O(Rs−1) and the following ”O” are all indepen-
dent of n. Inserting this information in (9.7), we get〈
χR(〈Q〉)fn , [H, iA⊥]χR(〈Q〉)fn

〉
≥ c

∥∥χR(〈Q〉)fn
∥∥2

+O
(
Rs−1

)∥∥χR(〈Q〉)fn
∥∥ + O

(
R2s−2

)
.(9.8)

Now, we need information on the fn for ”large 〈Q〉”. Let I ′ a compact interval such

that supp θ ⊂ I ′ ⊂ J̊ . Since fn = θ(H)fn and EI′θ = θ, EI′fn = EI′(H)θ(H)fn =
θ(H)fn = fn. Furthermore, the sequence (‖〈Q〉−sfn‖)n is bounded since it con-
verges to η, by assumption. Therefore we can apply Proposition 9.1 to f = fn
(choosing s close enough to 1/2, requiring in particular that s < γ), yielding (9.2)
with f replaced by fn and with n-independent ”O′s”. As in [GJ1] (cf. Corollary
3.2), we deduce from this that, for R ≥ R1,

(9.9) lim sup
n

∥∥χ̃R(〈Q〉)〈Q〉−sfn
∥∥ = O

(
R−γ

)
+ O

(
R−(γ+1)/2

)
= O

(
R−γ

)
.

We rewrite the l.h.s of (9.8) as〈
χR(〈Q〉)fn , [H, iA⊥]χR(〈Q〉)fn

〉
=

〈
fn ,

[
H, iχR(〈Q〉)A⊥χR(〈Q〉)

]
fn
〉

+ 2<
〈[
H,χR(〈Q〉)

]
fn , iA

⊥χR(〈Q〉)fn
〉
.

Since, as form,[
H,χR(〈Q〉)

]
=
[
H0, χR(〈Q〉)

]
◦ = −2∇ ·

(
∇
(
χR(〈·〉)

))
(Q) +

(
∆
(
χR(〈·〉)

))
(Q) ,

and since 〈Q〉−1∇A⊥ is bounded, we obtain, using (9.9),

2<
〈[
H,χR(〈Q〉)

]
fn , iA

⊥χR(〈Q〉)fn
〉

= O
(
Rs−γ

)∥∥χR(〈Q〉)fn
∥∥ .

Therefore (9.8) yields〈
fn ,

[
H, iχR(〈Q〉)A⊥χR(〈Q〉)

]
fn
〉
≥ c

∥∥χR(〈Q〉)fn
∥∥2

+O
(
Rs−γ

)∥∥χR(〈Q〉)fn
∥∥ + O

(
R2s−2

)
.(9.10)

Expanding the commutator as in [GJ1] (cf. Proposition 2.15), we see that

(9.11) lim
n

〈
fn ,

[
H, iχR(〈Q〉)A⊥χR(〈Q〉)

]
fn
〉

= 0 .

Using (9.11) in (9.10), we deduce that

lim sup
n

∥∥χR(〈Q〉)fn
∥∥ = O

(
Rs−γ

)
,

with s− γ < 0. It follows from this and (9.9) that η = 0. �

10. Symbol-like long range potentials.

This section is devoted to the

Proof of Theorem 1.18. Let H1 be the self-adjoint operator H0 + Vlr(Q) on
D(H0). Thanks to the assumption on Vlr, H1 is actually the Weyl quantization pw

of the symbol p ∈ S(〈ξ〉2, g) defined by p(x; ξ) = |ξ|2 + Vlr(x) (see Appendix A for
details). Now we redo the proofs of Theorems 1.8 and 1.14, replacing H0 by H1

at some appropriate places. More precisely, we perform this replacement exactly
when the original proofs use the “decay” in 〈Q〉 of θ(H)− θ(H0).
First, we claim that the last statement in Proposition 2.1 is valid if H0 is replaced
by H1. Indeed we can follow the proof of Lemma 4.3 in [GJ2] and arrive at (4.7)
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with θ(|ξ|2)θ(|ξ ∓ kx̂|2) replaced by θ(|ξ|2 + Vlr(x))θ(|ξ ∓ kx̂|2 + Vlr(x)). Since the
latter also vanishes for small enough support of θ, we conclude as in [GJ2].
For any ` ≥ 0 and any θ ∈ C∞c R;C), 〈P 〉`θ(H1) is bounded by pseudodifferential
calculus (cf. Appendix A). Therefore, the last statement in Proposition 2.4 holds
true with H0 is replaced by H1.
We can check that the result in Lemma 4.5 holds true with H0 replaced by H1.
Thus, performing the same replacement in (4.1), we get the result of Proposition 4.3.
We derive the Mourre estimate of Proposition 4.6 by the same proof. Also with the
same proofs, we get the results of Proposition 5.1, Corollary 5.2, Proposition 6.1,
Corollary 6.2, and Corollary 6.3.
In the proof of Proposition 7.1, we modify the argument leading to the bound
(7.5). Again, we replace H0 by H1. We notice that H1(F ) = eF (Q)H1e

−F (Q) is
also a pseudodifferential operator in C1(〈Q〉) such that, for ε ∈ [0; 1], the operator
〈Q〉ε(m+H1(F ))−1〈Q〉−ε is bounded, uniformly w.r.t. λ ≥ 1. Then, we can follow
the end of the proof of Proposition 7.1 with βlr replaced by β, H0(F ) by H1(F ),
and V by V − Vlr.
Next, we redo the proof of Proposition 8.2 without change. In the proof of Propo-
sition 9.1, we only change the treatment of (9.5) in the following way. We can
check that the results in Lemma C.5 are valid with H0 replaced by H1 and βlr by
β. Concerning the first term on the r.h.s of (9.5), we only need to point out that
〈P 〉`θ(H1) is bounded for any `, by pseudodifferential calculus. We thus obtain the
result of Proposition 9.1. Finally, we recover the result of Theorem 1.8 by the same
proof. �

Appendix A. Standard pseudodifferential calculus.

In this appendix, we briefly review some basic facts about pseudodifferential calcu-
lus. We refer to [Hö][Chapters 18.1, 18.4, 18.5, and 18.6] for a traditional study of
the subject but also to [Bea, Bo1, Bo2, BC, Le] for a modern and powerful version.

Denote by S (M) the Schwartz space on the space M and by F the Fourier trans-
form on Rd given by

Fu(ξ) := (2π)−d
∫
Rd
e−ix·ξu(x) dx ,

for ξ ∈ Rd and u ∈ S (Rd). For test functions u, v ∈ S (Rd), let Ω(u, v) and Ω′(u, v)
be the functions in S (R2d) defined by

Ω(u, v)(x, ξ) := v(x)Fu(ξ)eix·ξ ,

Ω′(u, v)(x, ξ) := (2π)−d
∫
Rd
u(x− y/2)v(x+ y/2)e−iy·ξ dy ,

respectively. Given a distribution b ∈ S ′(T ∗Rd), the formal quantities

(2π)−d
∫
R3d

ei(x−y)·ξb(x, ξ)v(x)u(y) dxdydξ ,

(2π)−d
∫
R3d

ei(x−y)·ξb((x+ y)/2, ξ)u(x)u(y) dxdydξ

are defined by the duality brackets 〈b,Ω(u, v)〉 and 〈b,Ω′(u, v)〉, respectively. They
define continuous operators from S (Rd) to S ′(Rd) that we denote by Op b(x,Dx)
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and bw(x,Dx) respectively. Sometimes we simply write Op b and bw, respectively.
Choosing on the phase space T ∗Rd a metric g and a weight function m with ap-
propriate properties (cf., admissible metric and weight in [Le]), let S(m, g) be the
space of smooth functions on T ∗Rd such that, for all k ∈ N, there exists ck > 0 so
that, for all x∗ = (x, ξ) ∈ T ∗Rd, all (t1, · · · , tk) ∈ (T ∗Rd)k,

(A.1) |a(k)(x∗) · (t1, · · · , tk)| ≤ ckm(x∗)gx∗(t1)1/2 · · · gx∗(tk)1/2 .

Here, a(k) denotes the k-th derivative of the function a. We equip the vector space
S(m, g) with the semi-norms ‖ · ‖`,S(m,g) defined by max0≤k≤` ck, where the ck are
the best constants in (A.1). S(m, g) is a Fréchet space. The space of operators
Op b(x,Dx) (resp. bw(x,Dx)) when b ∈ S(m, g) has nice properties (cf., [Hö, Le]).
Defining x∗ = (x, ξ) ∈ T ∗Rd, we stick here to the following metrics

(A.2) (g0)x∗ :=
dx2

〈x〉2
+
dξ2

〈ξ〉2
and (gα)x∗ :=

dx2

〈x〉2(1−α)
+
dξ2

〈ξ〉2
,

for 0 < α < 1, and to weights of the form, for p, q ∈ R,

m(x∗) := 〈x〉p〈ξ〉q.(A.3)

The gain of the calculus associated to each metric in (A.2) is given respectively by

h0(x∗) := 〈x〉−1〈ξ〉−1 and hα(x∗) = 〈x〉1−α〈ξ〉−1.(A.4)

Take weights m1, m2 as in (A.3), let g be g0 or gα, and denote by h the gain of
g̃. For any a ∈ S(m1, g) and b ∈ S(m2, g), there are a symbol a#rb ∈ S(m1m2, g)
and a symbol a#b ∈ S(m1m2, g) such that Op aOp b = Op (a#rb) and awbw =
(a#b)w. The maps (a, b) 7→ a#rb and (a, b) 7→ a#b are continuous and so are
also (a, b) 7→ a#rb − ab ∈ S(m1m2h, g) and (a, b) 7→ a#b − ab ∈ S(m1m2h, g). If
a ∈ S(m1, g), there exists c ∈ S(m1, g) such that aw = Op c. The maps a 7→ c and
a 7→ c−a ∈ S(m1m2h, g) are continuous. If a ∈ S(〈ξ〉m, g) for m ∈ N, aw and Op a
are bounded from Hm(Rd) to L2(Rd) and the corresponding operator norms are
controlled above by some appropriate semi-norm of a in S(〈ξ〉m, g). In particular,
they are bounded on L2(Rd), if a ∈ S(1, g). Futhermore, for a ∈ S(m, g),

(A.5) Op a is bounded⇐⇒ aw is bounded⇐⇒ a ∈ S(1, g) .

For a ∈ S(1, g),

(A.6) Op a is compact⇐⇒ aw is compact⇐⇒ lim
|x∗|→∞

a(x∗) = 0 .

Finally, we recall the following result on some smooth functional calculus for pseu-
dodifferential operators associated to some admissible metric g. This result is es-
sentially contained in [Bo1] (see [GJ2, Le], for details). We also use it for g = g0 or
g = gα.
For ρ ∈ R, we denote by Sρ the set of smooth functions ϕ : R −→ C such that, for
all k ∈ N, supt∈R〈t〉k−ρ|∂kt ϕ(t)| <∞. If we take a real symbol a ∈ S(m, g), then the
operator aw is self-adjoint on the domain D(aw) = {u ∈ L2(Rdx); awu ∈ L2(Rdx)}.
In particular, the operator ϕ(aw) is well defined by the functional calculus if ϕ is
a borelean function on R. We assume that m ≥ 1. A real symbol a ∈ S(m, g) is
said elliptic if (i− a)−1 belongs to S(m−1, g). Recall that h denotes the gain of the
symbolic calculus in S(m, g).
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Theorem A.1. Let m ≥ 1 and a ∈ S(m, g) be real and elliptic. Take a function
ϕ ∈ Sρ. Then ϕ(a) ∈ S(mρ, g) and there exists b ∈ S(hmρ, g) such that

(A.7) ϕ
(
aw(x,D)

)
=
(
ϕ(a)

)w
(x,D) + bw(x,D).

Appendix B. Regularity w.r.t. an operator.

For sake of completness, we recall here important facts on the regularity w.r.t. to a
self-adjoint operator. Further details can be found in [ABG, DG, GJ2, GGM, GGé].

Let H be a complex Hilbert space. The scalar product 〈·, ·〉 in H is right linear
and ‖ · ‖ denotes the corresponding norm and also the norm in B(H ), the space of
bounded operators on H . Let M be a self-adjoint operator in H . Let T be a closed
operator in H . The form [T,M ] is defined on (D(M)∩D(T ))× (D(M)∩D(T )) by

(B.1) 〈f , [T,M ]g〉 := 〈T ∗f , Mg〉 − 〈Mf , Tg〉 .

If T is a bounded operator on H and k ∈ N, we say that T ∈ Ck(M) if, for all
f ∈ H , the map R 3 t 7→ eitMTe−itMf ∈ H has the usual Ck regularity. The
following characterization is available.

Proposition B.1. [ABG, p. 250]. Let T ∈ B(H ). Are equivalent:

(1) T ∈ C1(M).
(2) The form [T,M ] defined on D(M) × D(M) extends to a bounded form on

H ×H associated to a bounded operator denoted by ad1
M (T ) := [T,M ]◦.

(3) T preserves D(M) and the operator TM −MT , defined on D(M), extends
to a bounded operator on H .

It immediately follows that T ∈ Ck(M) if and only if the iterated commutators

adpM (T ) := [adp−1
M (T ),M ]◦ are bounded for p ≤ k.

It turns out that T ∈ Ck(M) if and only if, for a z outside σ(T ), the spectrum of
T , (T − z)−1 ∈ Ck(M). Now, let N be a self-adjoint operator in H . It is natural
to say that N ∈ Ck(M) if (N − z)−1 ∈ Ck(M) for some z 6∈ σ(N). In that case,
(N − z)−1 ∈ Ck(M), for all z 6∈ R. Lemma 6.2.9 and Theorem 6.2.10 in [ABG]
gives the following characterization of this regularity:

Theorem B.2. [ABG, p. 251]. Let M and N be two self-adjoint operators in the
Hilbert space H . For z /∈ σ(N), set R(z) := (N − z)−1. The following points are
equivalent:

(1) N ∈ C1(M).
(2) For one (then for all) z /∈ σ(N), there is a finite c such that

|〈Mf,R(z)f〉 − 〈R(z̄)f,Mf〉| ≤ c‖f‖2, for all f ∈ D(M).(B.2)

(3) a. There is a finite c such that for all f ∈ D(M) ∩ D(N):

(B.3) |〈Mf,Nf〉 − 〈Nf,Mf〉| ≤ c
(
‖Nf‖2 + ‖f‖2

)
.

b. The set {f ∈ D(M); R(z)f ∈ D(M) andR(z̄)f ∈ D(M)} is a core for
M , for some (then for all) z /∈ σ(N).
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Note that the condition (3.b) could be uneasy to check, see [GGé]. We mention
[GM][Lemma A.2] to overcome this subtlety. Note that (B.2) yields that the com-
mutator [M,R(z)] extends to a bounded operator, in the form sense. We shall
denote the extension by [M,R(z)]◦. In the same way, from (B.3), the commuta-
tor [N,M ] extends to a unique element of B

(
D(N),D(N)∗

)
denoted by [N,M ]◦.

Moreover, if N ∈ C1(M) and z /∈ σ(N),[
M, (N − z)−1

]
◦ = (N − z)−1︸ ︷︷ ︸

H←D(N)∗

[N,M ]◦︸ ︷︷ ︸
D(N)∗←D(N)

(N − z)−1︸ ︷︷ ︸
D(N)←H

.(B.4)

Here we used the Riesz lemma to identify H with its anti-dual H ∗. It turns out
that an easier characterization is available if the domain of N is conserved under
the action of the unitary group generated by M .

Theorem B.3. [ABG, p. 258]. Let M and N be two self-adjoint operators in the
Hilbert space H such that eitMD(N) ⊂ D(N), for all t ∈ R. Then N ∈ C1(M) if
and only if (B.3) holds true.

Appendix C. Commutator expansions.

In this appendix, we recall known results on functional calculus and on commutator
expansions. Details can be found in [DG, GJ1, GJ2, Mø]. We then apply these
results to get several facts used in the main part of the text. We make use of pseu-
dodifferential calculus (cf. Appendix A) and of the regularity w.r.t. an operator,
recalled in Appendix B.

As in Appendix A, we consider, for ρ ∈ R, the set Sρ of functions ϕ ∈ C∞(R;C)
such that

∀k ∈ N, Ck(ϕ) := sup
t∈R
〈t〉−ρ+k|∂kt ϕ(t)| <∞.(C.1)

Equipped with the semi-norms defined by (C.1), Sρ is a Fréchet space. We recall
the following result from [DG] on almost analytic extension.

Proposition C.1. [DG]. Let ϕ ∈ Sρ with ρ ∈ R. There is a smooth function
ϕC : C→ C, called an almost analytic extension of ϕ, such that, for all l ∈ N,

ϕC|R = ϕ,
∣∣∂z̄ϕC(z)

∣∣ ≤ c1〈Re(z)〉ρ−1−l|Im(z)|l ,(C.2)

suppϕC ⊂ {x+ iy; |y| ≤ c2〈x〉},(C.3)

ϕC(x+ iy) = 0, if x 6∈ suppϕ,(C.4)

for constants c1, c2 only depending on the semi-norms (C.1) of ϕ in Sρ.

Next we recall Helffer-Sjöstrand’s functional calculus (cf., [HeS, DG]). As in Ap-
pendix B, we consider a self-adjoint operator M acting in some complex Hilbert
space H . For ρ < 0, k ∈ N, and ϕ ∈ Sρ, the bounded operators (∂kϕ)(M) can be
recovered by

(∂kϕ)(M) =
i(k!)

2π

∫
C
∂z̄ϕ

C(z)(z −M)−1−kdz ∧ dz̄,(C.5)

where the integral exists in the norm topology, by (C.2) with l = 1. For ρ ≥ 0, we
rely on the following approximation:
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Proposition C.2. [GJ1]. Let ρ ≥ 0 and ϕ ∈ Sρ. Let χ ∈ C∞c (R) with χ = 1 near
0 and 0 ≤ χ ≤ 1, and, for R > 0, let χR(t) = χ(t/R). For f ∈ D(〈M〉ρ) and k ∈ N,
there exists

(∂kϕ)(M)f = lim
R→+∞

i

2π

∫
C
∂z̄(ϕχR)C(z)(z −M)−1−kf dz ∧ dz̄.(C.6)

The r.h.s. converges for the norm in H . It is independent of the choise of χ.

Notice that, for some c > 0 and s ∈ [0; 1], there exists some C > 0 such that, for
all z = x+ iy ∈ {a+ ib | 0 < |b| ≤ c〈a〉} (like in (C.3)),∥∥〈M〉s(M − z)−1

∥∥ ≤ C〈x〉s · |y|−1.(C.7)

Observing that the self-adjointness assumption on B is useless, we pick from [GJ1]
the following result in two parts.

Proposition C.3. [BG, DG, GJ1, Mø]. Let k ∈ N∗, ρ < k, ϕ ∈ Sρ, and B
be a bounded operator on H such that B ∈ Ck(M). As forms on D(〈M〉k−1) ×
D(〈M〉k−1),

[ϕ(M), B] =

k−1∑
j=1

1

j!
(∂jϕ)(M)adjM (B)(C.8)

+
i

2π

∫
C
∂z̄ϕ

C(z)(z −M)−kadkM (B)(z −M)−1dz ∧ dz̄.(C.9)

In particular, if ρ ≤ 1, then B ∈ C1(ϕ(M)).

The rest of the previous expansion is estimated in

Proposition C.4. [BG, GJ1, Mø]. Let B be a bounded operator on H such that
B ∈ Ck(M). Let ϕ ∈ Sρ, with ρ < k. Let Ik(ϕ) be the rest of the development of
order k (C.8) of [ϕ(M), B], namely (C.9). Let s, s′ ≥ 0 such that s′ < 1, s < k,

and ρ+s+s′ < k. Then, for ϕ staying in a bounded subset of Sρ, 〈M〉sIk(ϕ)〈M〉s′

is bounded and there exists a M and ϕ independent constant C > 0 such that
‖〈M〉sIk(ϕ)〈M〉s′‖ ≤ C‖adkM (B)‖.

Now, we show a serie of results needed in the main text. Most of them are more or
less known. We provide proofs for completeness.

Proof of Lemma 3.1. The assumptions 1.1 and 1.5 are not required for the proof of
(1). We note that (1 +H0)−1 = aw and 〈Q〉 = bw, where a(x, ξ) = (1 + |ξ|2)−1 and
b(x, ξ) = 〈x〉, Since a ∈ S(〈ξ〉−2, g0) and b ∈ S(〈x〉, g0), where the metric g0 defined
in (A.2), the form [(1 +H0)−1, 〈Q〉] is associated to cw with c ∈ S(h〈ξ〉−2〈x〉, g0) =
S(〈ξ〉−3, g0), by pseudodifferential calculus. Since S(〈ξ〉−3, g0) ⊂ S(1, g0), the form
[(1 + H0)−1, 〈Q〉] extends to bounded one on L2(Rd). Similarly, we can show that
the iterated commutators adp〈Q〉((1 + H0)−1) all extend to bounded operator on

L2(Rd). By the comment just after Proposition B.1, (1 + H0)−1 ∈ C∞(〈Q〉) and
H0 ∈ C∞(〈Q〉), by definition. Since 〈P 〉 = dw with d(x, ξ) = (1 + |ξ|2)1/2, we can
follow the same lines to prove that 〈P 〉−1 ∈ C∞(〈Q〉) and thus 〈P 〉 ∈ C∞(〈Q〉). Sim-
ilarly, Pi, PiPj , 〈P 〉2 ∈ C∞(〈Q〉). Since the form [〈P 〉, 〈Q〉] is associated to bounded
pseudodifferential operator, we see that D(〈Q〉〈P 〉) = D(〈P 〉〈Q〉).
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By a direct computation, we see that the group eit〈Q〉 (for t ∈ R) preserves the
Sobolev space H2(Rd), which is the domain of H. Furthermore the form [H, 〈Q〉]
cöıncide on D(H) ∩ D(〈Q〉) with [H0, 〈Q〉]. The latter is associated, by pseudodif-
ferential calculus, to a pseudodifferential operator that is bounded from H1(Rd) to
L2(Rd). By Theorem B.3, H ∈ C1(〈Q〉) and, for z ∈ C \ R,

(C.10)
[
(z −H)−1, 〈Q〉

]
◦ = (z −H)−1

[
H, 〈Q〉

]
◦(z −H)−1 .

On D(〈Q〉)×D(〈Q〉), we can write the form [[(z −H)−1, 〈Q〉]◦] as[
(z −H)−1, 〈Q〉

] [
H, 〈Q〉

]
◦(z −H)−1 + (z −H)−1

[
H, 〈Q〉

]
◦

[
(z −H)−1, 〈Q〉

]
+ (z −H)−1

[[
H, 〈Q〉

]
◦ , 〈Q〉

]
(z −H)−1 .

Since [[H, 〈Q〉]0, 〈Q〉] = [[H0, 〈Q〉]0, 〈Q〉] is associated to a bounded pseudodifferen-
tial operator, H ∈ C2(〈Q〉) by Proposition B.1. Now we conclude the proof of (2) by
induction, making use of (C.10) and the fact that the form adp〈Q〉(H) = adp〈Q〉(H0)

extends to a bounded one, if p ≥ 2.
Let N = H or H0. For z ∈ C \R, we have (C.10) with H replaced by N , thanks to
(1) and (2). Using the resolvent equality for the difference (z −N)−1 − (i−N)−1,
we see that

(C.11)
∥∥[(z −N)−1, 〈Q〉

]
◦

∥∥ ≤ C
(

1 +
〈<z〉
|=z|

)
.

where C only depends on the operator norm of [N, 〈Q〉]◦. Now we use (C.5) with
ϕ = θ to express the form [θ(H), 〈Q〉] and see that it extends to a bounded one,
thanks to (C.11). This shows that θ(N) ∈ C1(〈Q〉). In a similar way, we can
show by induction that θ(N) ∈ C∞(〈Q〉). The above arguments actually show that
Pi[θ(N), 〈Q〉]◦ is a bounded operator on L2(Rd). So is also [Piθ(N), 〈Q〉]◦ and,
since Piθ(N) is bounded, Piθ(N) ∈ C1(〈Q〉). Again we can derive by induction
that Piθ(N) ∈ C∞(〈Q〉). Similarly we can verify that PiPjθ(N) ∈ C∞(〈Q〉).
Note that θ(H)D(〈Q〉) ⊂ D(H) = D(H0). Let z ∈ C \ R. By (2), (z − H)−1

preserves D(〈Q〉) and, on D(〈Q〉),

〈Q〉 (z −H)−1 = (z −H)−1 〈Q〉 +
[
〈Q〉, (z −H)−1

]
◦ .

Thus 〈Q〉 (z −H)−1〈Q〉−1 is bounded and

〈Q〉 (z −H)−1〈Q〉−1 = (z −H)−1 +
[
〈Q〉, (z −H)−1

]
◦ 〈Q〉

−1 .

By (C.10), we see that 〈P 〉〈Q〉 (z −H)−1〈Q〉−1

= 〈P 〉(z −H)−1 + 〈P 〉(z −H)−1
[
〈Q〉, H

]
◦ (z −H)−1〈Q〉−1

is bounded and, for some z-independent C ′ > 0,∥∥〈P 〉〈Q〉 (z −H)−1〈Q〉−1
∥∥ ≤ C ′

|=z|

(
1 +

〈<z〉
|=z|

)
.

Therefore, 〈P 〉〈Q〉 θ(H)〈Q〉−1 is bounded, by (C.5) with k = 0. This implies that
θ(H)D(〈Q〉) ⊂ D(〈P 〉〈Q〉). �

Lemma C.5. Assume Assumptions 1.1 and 1.5. For integers 1 ≤ i, j ≤ d, let
the operator τ(P ) be either 1, or Pi, or PiPj. Then, for any θ ∈ C∞c (R;C)
and any σ ≥ 0, 〈Q〉βlr−στ(P )(θ(H) − θ(H0))〈Q〉σ, 〈Q〉−στ(P )θ(H)〈Q〉σ, and
〈Q〉−στ(P )θ(H0)〈Q〉σ are bounded on L2(Rd).
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Proof. We first note that, for δ ∈ [−1; 1], the form [H, 〈Q〉δ] = [H0, 〈Q〉δ] extends
to a bounded one from H1(Rd) to L2(Rd). Thus, as in the previous proof (the one
of Lemma 3.1), for H ′ = H and H ′ = H0, there exists C > 0, such that, z ∈ C \R,

(C.12)
∥∥〈P 〉2〈Q〉−δ (z −H ′)−1〈Q〉δ

∥∥ ≤ C

|=z|

(
1 +

〈<z〉
|=z|

)
.

Since, for δ ∈ [0; 1], we can write

〈Q〉−1−δ(z −H ′)−1〈Q〉1+δ = 〈Q〉−δ(z −H ′)−1〈Q〉δ

+ 〈Q〉−1−δ(z −H ′)−1[H ′, 〈Q〉]◦(z −H ′)−1〈Q〉δ

with [H ′, 〈Q〉]◦ = [H0, 〈Q〉]◦, (C.12) implies (C.12) with δ replaced by δ + 1. By
induction, we get (C.12) for all δ ≥ 0. For δ ∈ [−1; 0], we can similarly show (C.12)
with δ replaced by δ − 1 and then, by induction, (C.12) for all δ ≤ 0.
For z ∈ C \ R,

〈Q〉βlr−σVc(Q)(z −H0)−1〈Q〉σ

= 〈Q〉βlrχc(Q) · Vc(Q)〈P 〉−2 · 〈P 〉2〈Q〉−σ(z −H0)−1〈Q〉σ

and, for W = Wαβ + Vlr + Vsr,

〈Q〉βlr−σW (Q)(z −H0)−1〈Q〉σ = 〈Q〉βlrW (Q) 〈Q〉−σ(z −H0)−1〈Q〉σ ,

and, using iP · v(Q) = (∇ · v)(Q) + v(Q) · iP ,

〈Q〉βlr−σ(z −H)−1
(
v · ∇Ṽsr

)
(Q)(z −H0)−1〈Q〉σ

= 〈Q〉βlr−σ(z −H)−1
(
v(Q) · iP

)
Ṽsr(Q)(z −H0)−1〈Q〉σ

− 〈Q〉βlr−σ(z −H)−1Ṽsr(Q)
(
v(Q) · iP

)
(z −H0)−1〈Q〉σ

= 〈Q〉βlr−σ(z −H)−1iP 〈Q〉σ−βlr · v(Q)〈Q〉βlr Ṽsr(Q)〈Q〉−σ(z −H0)−1〈Q〉σ

− 〈Q〉βlr−σ(z −H)−1〈Q〉σ−βlr (∇ · v)(Q)〈Q〉βlr Ṽsr(Q)〈Q〉−σ(z −H0)−1〈Q〉σ

− 〈Q〉βlr−σ(z −H)−1〈Q〉σ−βlr 〈Q〉βlr Ṽsr(Q)v(Q) · 〈Q〉−σiP (z −H0)−1〈Q〉σ .

By (C.12) for H ′ = H and δ = σ − βlr, (C.12) for H ′ = H0 and δ = σ, and by the
resolvent formula, we see that the operator

〈P 〉2〈Q〉βlr−σ
(

(z −H)−1 − (z −H0)−1
)
〈Q〉σ

is bounded and its norm is dominated by some z-independent C ′ times the r.h.s.
of (C.12) squared. Now, we use (C.5) with k = 0 to get the boundedness of
〈P 〉2〈Q〉βlr−σ(θ(H) − θ(H0))〈Q〉σ. This shows the desired result for the first con-
sidered operator.
The result for the last two operators follows from (C.12) and (C.5) with k = 0. �

Lemma C.6. Assume Assumptions 1.1 and 1.5 satisfied. Let θ ∈ C∞c (R;C). Let
χ ∈ C∞c (R;R) with χ = 1 near 0 and, for R ≥ 1, let χR(t) = χ(t/R) and χ̃R(t) =
1− χR(t). Let τ(P ) be either 1, or Pi, or PiPj, for 1 ≤ i, j ≤ d.

(1) For σ ∈ [0; 1[ and ε ≥ 0, the operators

〈Q〉σ−ε[τ(P )θ(H), χ̃R(〈Q〉)]◦〈Q〉σ and 〈Q〉σ−ετ(P )[θ(H), χ̃R(〈Q〉)]◦〈Q〉σ

are bounded on L2(Rd) and their norm are O(R2σ−1−ε).
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(2) The operators

〈Q〉1−βlr
[
τ(P )θ(H), χR(〈Q〉)

]
◦ and 〈Q〉1−βlrτ(P )

[
θ(H), χR(〈Q〉)

]
◦

are bounded on L2(Rd) and their norm are O(R−βlr ).

Proof. We only prove (1). The proof of (2) is similar since [θ(H), χR(〈Q〉)] =
−[θ(H), χ̃R(〈Q〉)] and [τ(P )θ(H), χR(〈Q〉)] = −[τ(P )θ(H), χ̃R(〈Q〉)].
Note that, on D(〈Q〉σ),

〈Q〉σ−ε
[
τ(P )θ(H), χR(〈Q〉)

]
◦〈Q〉

σ = 〈Q〉σ−ε
[
τ(P ), χR(〈Q〉)

]
◦θ(H)〈Q〉σ

+ 〈Q〉σ−ετ(P )
[
θ(H), χR(〈Q〉)

]
◦〈Q〉

σ ,

where [θ(H), χR(〈Q〉)
]
◦ is explicit and satisfies∥∥〈Q〉σ−ε[θ(H), χR(〈Q〉)

]
◦〈Q〉

σ
∥∥ = O

(
R2σ−1−ε) .

Thus, it suffices to study the second operator in (1).
The form [H,χR(〈Q〉)] = [H0, χR(〈Q〉)] extends to a bounded one from H1(Rd) to
L2(Rd). Furthermore,

[H, χ̃R(〈Q〉)]◦ = [H0, χ̃R(〈Q〉)]◦ = −χ′R(〈Q〉)〈Q〉−1Q · P + BR ,

with bounded BR such that ‖BR‖ = O(R−2). Using the proofs of Lemma 3.1 and
of Lemma C.5, we get, for z ∈ C \ R, the operator

〈Q〉σ−ε[(z−H)−1, χ̃R(〈Q〉)]◦〈Q〉σ = −〈Q〉σ−ε(z−H)−1[H, χ̃R(〈Q〉)]◦(z−H)−1〈Q〉σ

is bounded and, there exist C > 0 such that, for all z ∈ C \ R and all R ≥ 1,∥∥〈Q〉σ−ε[(z −H)−1, χ̃R(〈Q〉)]◦〈Q〉σ
∥∥ ≤ R2σ−1−ε C

|=z|2
(

1 +
〈<z〉
|=z|

)2

.

Using (C.5) with k = 0, we get the boundedness of 〈Q〉σ−ε[θ(H), χ̃R(〈Q〉)]◦〈Q〉σ
and the desired upper bound on its norm. Similarly, we can treat the operators
〈Q〉σ−εPi[θ(H), χ̃R(〈Q〉)]◦〈Q〉σ and 〈Q〉σ−εPiPj [θ(H), χ̃R(〈Q〉)]◦〈Q〉σ. �

Lemma C.7. Let (α;β) such that |α−1|+β < 1. Let ε ∈]2|α−1|; 1−β+ |α−1|].
Then the integral (3.7) is infinite.

Proof. Denote by I this integral (3.7). Note that its integrand is nonnegative.
Using spherical coordinates,

I = cd

∫ +∞

0

(
1− κ(r)

)3
r1−β+|α−1|−(d+ε)+d−1 sin2

(
krα

)
dr

where cd > 0 is the mesure of the unit sphere in Rd. For n ∈ N, let

an =
1

k

(π
2
− π

4
+ 2nπ

)
and bn = an +

π

2k
.

For r ∈ [a
1/α
n ; b

1/α
n ], sin2

(
krα

)
≥ 1/2. Let N be a large enough integer such that,

for n ≥ N , a
1/α
n lies outside the support of κ(| · |). Thus,

2I

cd
≥

∞∑
n=N

∫ b1/αn

a
1/α
n

r−β+|α−1|−ε dr .
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The general term in the above serie is bounded below by c · nα−1(1−β+|α−1|−ε)−1,
for some c > 0. By assumption, 1−β+ |α− 1| − ε ≥ 0, therefore the serie diverges,
showing that I is infinite. �

Appendix D. Strongly oscillating term.

In this section, we focus on the case α > 1 and prove the key result on oscillations,
namely Proposition 2.4. To this end, we recall the following well-known result.

Lemma D.1. Schur’s lemma.
Let (n;m) ∈ (N∗)2. Let K : Rn × Rm −→ C be a measurable function such that,
there exists C > 0 such that

sup
x∈Rn

∫
Rm
|K(x; y)| dy ≤ C and sup

y∈Rm

∫
Rn
|K(x; y)| dx ≤ C .

Then the operator A : L2(Rm) −→ L2(Rn), that maps f ∈ L2(Rm) to the function

x 7→
∫
Rm

K(x; y) · f(y) dy ,

is well-defined, bounded and its operator norm is bounded above by C.

Proof of Proposition 2.4. Recall that, by (2.1), denoting 1− κ by χ,

eα±(Q) =
(

1− κ
(
|Q|
))
e±ik|Q|

α

= χ
(
|Q|
)
e±ik|Q|

α

,

where κ ∈ C∞c (R;R) is identically 1 near 0. Note that, for ε, δ > 0, 〈Q〉−ε〈P 〉−δ
is compact on L2(Rd;C). By pseudodifferential calculus (or commutator expan-
sions, cf. [GJ1]), 〈Q〉−ε〈P 〉−`〈Q〉ε is bounded on L2(Rd;C) for any ` ≥ 0. Thus,
the desired result follows from the boundedness on L2(Rd;C) for all p ≥ 0 of
〈P 〉−`1〈Q〉peα±(Q)〈P 〉−`2 , for appropriate `1 and `2. Given p, we seek for `1, `2 ≥ 0

and C > 0 such that, for all function f ∈ S (Rd;C), the Schwartz space on Rd,∥∥〈P 〉−`1〈Q〉peα±(Q)〈P 〉−`2f
∥∥2

=
〈
〈P 〉−`2f , 〈Q〉peα∓(Q)〈P 〉−2`1〈Q〉peα±(Q)〈P 〉−`2f

〉
is bounded above by C‖f‖2.
Given f ∈ S (Rd;C), we set g = 〈P 〉−`2f ∈ S (Rd;C) and write

f1(x) :=
(
〈Q〉peα∓(Q)〈P 〉−2`1〈Q〉peα±(Q)g

)
(x)

=
(
2π
)−d ∫

R2d

eiϕα,±(x;y;ξ)〈x〉pχ(x)〈ξ〉−2`1〈y〉pχ(y)g(y) dy dξ ,(D.1)

where ϕα,±(x; y; ξ) = (x−y)·ξ∓k(|x|α−|y|α) and the integral converges absolutely,
if `1 > d/2. Take δ ∈]0; 1/2[ and τ ∈ C∞c (R) such that τ(t) = 1 if |t| ≤ 1 − 2δ
and τ(t) = 0 if |t| ≥ 1 − δ. On the support of (x; y) 7→ χ(x)χ(y)τ(|x − y| · |x|−1),
|x− y| ≤ (1− δ)|x|. In particular, on this support, 0 does not belong the segment
[x; y] and, for all t ∈ [0; 1],

(D.2) (2− δ)|x| ≥ |tx+ (1− t)y| ≥ |x| − (1− t)|y − x| ≥ δ|x| .

We write f1(x) = f2(x) + f3(x) where f2 (resp. f3) is given by (D.1) with g(y)
replaced by (1− τ(|x− y| · |x|−1))g(y) (resp. τ(|x− y| · |x|−1)g(y)). On the support
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of the function (x; y) 7→ χ(x)χ(y)(1 − τ(|x − y| · |x|−1)), |x − y| ≥ (1 − 2δ)|x| > 0
and |x− y| ≥ Cδ|y|, for some (x; y)-independent, positive constant Cδ. Since(
Lx,y,Dξ − 1

)
ei(x−y)·ξ∓ik(|x|α−|y|α) = 0 for Lx,y,Dξ = |x− y|−2(x− y) ·Dξ ,

we get, by integration by parts, that, for all n ∈ N,

f2(x) = (2π)−d
∫
eiϕα,±(x;y;ξ)〈x〉pχ(x)〈y〉pχ(y)g(y)

(
1− τ(|x− y|〈x〉−1)

)
·
(
L∗x,y,Dξ

)n(〈ξ〉−2`1
)
dydξ .

Choosing n large enough, we can apply Lemma D.1 to show that the map f 7→ f2

is bounded on L2(Rd).
On the support of the function (x; y) 7→ χ(x)χ(y)τ(|x − y| · |x|−1), we can write
ϕα,±(x; y; ξ) = (x− y) · (ξ ∓ kwα(x; y)) where

wα(x; y) = α

∫ 1

0

∣∣tx + (1− t)y
∣∣α−2(

tx + (1− t)y
)
dt .

Setting, for j ∈ {0; 1},

λj =

∫ 1

0

∣∣tx + (1− t)y
∣∣α−2

tj dt ,

λ0 ≥ λ1 > 0 and α−1wα(x; y) = λ1x+ (λ0 − λ1)y = λ0((λ1/λ0)x+ (1− λ1/λ0)y).
By (D.2),

λ0 ≥ λ1 ≥ 2−1
(
δ|x|

)α−2

and |wα(x; y)| ≥ αλ0δ|x|. Furthermore |wα(x; y)| ≤ α((2− δ)|x|)α−1, thus

2−1δα−1 ≤ α−1|x|1−α · |wα(x; y)| ≤ (2− δ)α−1 ,(D.3)

2−1δα−1(2− δ)1−α ≤ α−1|y|1−α · |wα(x; y)| ≤ δ1−α(2− δ)α−1 .(D.4)

In the integral defining f3, we make the change of variables ξ 7→ η = ξ ∓ kwα(x; y)
and obtain

f3(x) = (2π)−d
∫
ei(x−y)·η〈x〉pχ(x)〈y〉pχ(y)g(y)τ(|x− y| · |x|−1)

·
〈
η ± kwα(x; y)

〉−2`1
dydη .(D.5)

We write f3(x) = f4(x) + f5(x) where f4 (resp. f5) is given by (D.5) with g(y)
replaced by τ(|η| · |kwα(x; y)|−1)g(y) (resp. (1 − τ(|η| · |kwα(x; y)|−1))g(y)). On
the support of the integrand of f4, |η| ≤ (1 − δ)|kwα(x; y)| which implies that
|η ± kwα(x; y)| ≥ δ|kwα(x; y)|. Take `1 > (α − 1)−1(p + d). By (D.3), (D.4), and
Lemma D.1, the map f 7→ f4 is bounded on L2(Rd).
On the support of the integrand of f5, |η| ≥ (1− 2δ)|kwα(x; y)| > 0. Since

Mη,Dxe
i(x−y)·η = ei(x−y)·η = −Mη,Dye

i(x−y)·η for Mη,Dz = |η|−2η ·Dz ,

we get, by integration by parts, that, for all n ∈ N,

〈g , f4〉 = (2π)−d
∫
ei(x−y)·η(−M∗η,DxM∗η,Dy)n[〈x〉pχ(x)g(x)〈y〉pχ(y)g(y)

· τ(|x− y| · |x|−1)
(
1− τ(|η| · |kwα(x; y)|−1)

)]
dxdydη .
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Choosing the integer n such that n(α− 1) > p+ d, using (D.3) and (D.4), we can
apply Lemma D.1 to get some f -independent constant C0 > 0 such that∣∣〈g , f4〉

∣∣ ≤ C0 sup
0≤|γ|≤n

(
‖g‖2 + ‖P γg‖2

)
.

Now the r.h.s. is bounded above by C‖f‖2 if `2 is greater than 1 plus the integer
part of (α− 1)−1(p+ d). �
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1997), exposé numéro XXIII.
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