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Abstract

We consider an electronic bound state of the usual, non-relativistic, molecular
Hamiltonian with Coulomb interactions and fixed nuclei. Away from appropriate
collisions, we prove the real analyticity of all the reduced densities and density
matrices, that are associated to this bound state. We provide a similar result for
the associated reduced current density.
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1 Introduction.

The notions of density and density matrices are quite old tools in the treatment of physical
N-body problems. For instance, the Thomas-Fermi theory goes back to the year 1927 (cf.
[Li]). Nowadays these tools do play a central role in one important approach of the N-
body problem, namely the Density Functional Theory (DFT) (cf. [E, LiSe]). Regularity
properties of the related reduced density and density matrices are useful to developp the
DFT. For instance, the real analyticity of a density was recently used for Hohenberg-Kohn
Theorems in [G]. The purpose of the present paper is to prove, in a large region of the
configuration space, the real analyticity of all reduced densities and density matrices of a
pure state for a molecular Hamiltonian with fixed nuclei.

We consider a molecule with N moving electrons, with N > 1, and L fixed nuclei, with
L > 1 (Born-Oppenheimer idealization). While the L distinct vectors Ry, .-+, Ry € R?
denote the positions of the nuclei, the positions of the electrons are given by x1,--- ,zy €
R3. The charges of the nuclei are respectively given by the positive Z;,--- , Z; and the
electronic charge is —1. In this picture, the Hamiltonian of the electronic system is

N L
B S (b= Ak R) ¢ X Il B
j=1 k=1 1<j<j'<N

where By = Z ZiZw|Re — Ry ™!

1<k<k’<L

and —A,; stands for the Laplacian in the variable z;. Here we denote by |- | the euclidian

norm on R3. Setting A := Zjvzl A;,, we define the potential V' of the system as the
multiplication operator satisfying H = —A + V. Thanks to Hardy’s inequality

Je > 0: Vf € WH2(RY /R 2 FOPdE < c/ngf(t)\th, (1.2)

one can show that V' is A-bounded with relative bound 0. Therefore the Hamiltonian H
is self-adjoint on the domain of the Laplacian A, namely W??(R3") (see Kato’s theorem
in [RS2], p. 166-167).

From now on, we fix an electronic bound state » € W22(R3¥) \ {0} such that, for some
real £, Hy = Ev. We point out (cf. [CFKS, FH, RS4]) that such a bound state exists at

least if £ < Ey and
L

N<L—1+22Zk.

k=1

Associated to that bound state 1, we consider the following objects. Let k£ be an integer
such that 0 < k < N. Let p; : (R*)* — R be the almost everywhere defined, L!(R3¥)-
function given by, for x = (zy;--- ;1) € R3*,

pe(z) = /RS(M)W@; )| dy. (1.3)
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Define 73 : (R*)?* — C as the almost everywhere defined function given by, for x =
(z1;--+;21) € R* and 2/ = (2;--- ;7)) € R,

wwe) = [ V@i . (1.4

Note that, almost everywhere, pi(z) = vx(x; ). It turns out that v, may be seen as the
kernel (“Green function”) of a trace class operator (see [Le, LiSe]). We call the function
pi the k-particle reduced density and the kernel v the k-particle reduced density matriz.
When k = 1, p := p; is often simply called the (electronic) density. In this case, we also
introduce the reduced current density, defined as the almost everywhere defined, L!(R?)-
function C' : R3 — R? given by, for 2 € R?, the following imaginary part

Ca) =3 [ Valwplendy. (1.5

From a physical point of view, the previous objects differ from the true physical ones by
some prefactor (see [E, Le, LiSe]).
It is useful to introduce the following subsets of R3. The closed set

Co = {&=(1; - ;a) € R¥; 3(j;5) € ((1,K]NN)*; j # 5" and 2; = x5/}
gathers all possible collisions between the first £ electrons while the closed set

Ry = {z=(x1;- ;) eR¥*; Fj e [LANN,I € ;L] NN; z; = Ry}

groups together all possible collisions of these k electrons with the nuclei. We set u,ﬁ” =
R3 \ (Cp URy), which is an open subset of R

Now, we consider two sets of positions for the first k£ electrons and introduce the set of all
possible collisions between positions of differents sets, namely

(zs2') € R¥)*; &= (w03 yan), 2 = (a3 32),
C(Q) -
Ko
355" € (LA NN)?; 25 =2l
We introduce the open subset of (R3*)? defined by
U = U <u) N e
In the £ =1 case, we note that C; = (), Ul(l) =R3\ {Ry,---, R} and
U = (RO\{Ry, - Ri})"\ D,
where D = {(z;2) € (R3)?;x = 2’} is the diagonal of (R?)2. We have the following

Theorem 1.1. [FHHS1, FHHS2, J.
The one-particle reduced density p = py is real analytic on Ul(l) =R3\{Ry,---,Rr}.
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The original proof was given in [FHHS1, FHHS2| and relies on a clever decomposition of
the integration domain of the integral defining p into pieces, on which one can perform
an appropriate change of variables. A different proof of Theorem 1.1 is provided in [J].
We refer to [FHHS2, FS] for a refined information on p. In [FHHS2], a similar analyticity
result on 7; was announced, without proof. More precisely, it was claimed there that v,
should be real analytic on Z/ll(l) X Z/{l(l). Adapting the method of [FHHS2], a shlighly weaker
result on ; was proved in [HS], namely

Theorem 1.2. [HS].
The one-particle reduced density matrix v; s real analytic on Ml(Q).

Note that L{l(Q) is indeed a strict subset of L{l(l) X Z/{l(l).
In [FHHS2|, it was also announced without proof that the real analyticity of ps should be
granted on

UQ(I) = R6\(CQUR2) = (RS\{Rl""vRL})z\D - ul(Q)'

In the present paper, we work with the tools and the method, used in [J] to get Theo-
rem 1.1, to prove the following three results.

Theorem 1.3. The reduced current density C' is real analytic on Z/ll(l) =R3N\{Ry, - ,Rr}.

Theorem 1.4. For all integer k with 0 < k < N, the k-particle reduced density py is real
analytic on Ll,il).

Theorem 1.5. For all integer k with 0 < k < N, the k-particle reduced density matrix
Yk 1S real analytic on U,EQ) = (Z/l,il) X u,ﬁ”) \C,gz).

Theorem 1.4 for kK = 1 coincides with Theorem 1.1. The proof of Theorem 1.4 is, when
restricted to the &k = 1 case, just a rewriting of the proof of Theorem 1.1 in [J] and
provides a direct justification of Theorem 1.3. We note that Theorem 1.5 for k£ = 1 is
exactly Theorem 1.2 and that Theorem 1.4 with k£ = 2 fits precisely to the announced
result on py in [FHHS2.

The set of all possible collisions between particles is Cy U Ry and the potential V' is
real analytic precisely on R3Y \ (Cy U Ry). Classical elliptic regularity applied to the
equation Hi = Et shows that v is also real analytic on R*V \ (Cy U Ry). We refer to
[ACN, FHHS4, FS] for more information on the behaviour of ¢ near collisions. It turns
out that, at least at some places in Cxy U Ry, ¢ is not real analytic (cf. [FHHS4]). Thus,
in the definition (1.3) of pg, for an integer k£ with 0 < k < N, the domain of integration
does contain such singularities. Therefore it is not clear a priori that p; is real analytic
somewhere. This is however true, by Theorem 1.4, on the complement of the set of all
possible collisions of the “external” electrons, namely on u,ﬁl).

The proofs of Theorems 1.1 and 1.2 do not directly use the analyticity of ¢. This is also
the case of the proofs of Theorems 1.3, 1.4, and 1.5, below.

It turns out that our proofs of Theorems 1.4 and 1.5 have a common structure that we
want to describe now. Using an appropriate, z-dependent, unitary operator U,, that acts
on L2(R3*WN=k) e locally transform the equation H1) = E4) into an elliptic differential



Analyticity of electronic densities, 19-04-2021 )

equation (U,HU_ U, = EU, (the “twisted” equation), the coefficients of which have
nice analytic properties. Applying elliptic regularity to the latter equation, we obtain the
real analyticity of z +— Uy € L2(R3™=F) that yields the real analyticity of pp : z >
|U0||% (]| - || being the norm on L2(R3™N=k)). For ~;, we follow the same lines but with a
(z; 2')-dependent, unitary operator U,.,), and two “twisted” differential equations in the
variables (z;z’;y). These proofs are performed in Section 4.

Let us now compare the two available methods to prove such results, namely the one
mentioned just above and the one used in [FHHS2, HS] to get Theorems 1.1 and 1.2. We
point out that elliptic regularity was also an important tool in [FHHS2, HS]. Another
common tool is the use of a z-dependent change of variables on the “internal” variables
y € R?W=F) since the above unitary operators are both the implementation in L?(R3 (V=)
of such a change of variables. However, we use here global changes of variables in contrast
to the local ones in [FHHS2, HS]. While, there, the integrals on R*¥~1 defining p; and
~1 are split in several pieces, on which an appropriate change of variables is performed to
make the real analyticity apparent, we view here py (resp. ~x) as the LQ(R?’(N ‘k))—norm
(resp. the L2(R3V=*))_scalar product) of one (resp. two) L?(R3™~*))-valued, real analytic
function(s).

In view of the behaviour of @ near some points in Cnx U Ry, that was established in
[FHHS4], it is quite natural to expect that, for an integer k with 0 < k& < N, neither py
nor 7 is real analytic everywhere. Their exact domain of real analyticity is still an open
question. The domains obtained in Theorems 1.4 and 1.5 are the largest ones that can be
reached by the method used in this paper, as explained in Remarks 4.2 and 4.4.

As already pointed out in [J], the twisted calculus, that we use here, allows us to treat
more general Hamiltonian than H. We introduce, in Section 5, a class of elliptic, second
order differential operators with Coulomb singularities. We observe that the conjugation
by the twist actually preserves the ellipticity. Assuming that there exists a bound state
for such an operator, we show in Theorem 5.1 that our previous, main results hold true for
it. Moreover, we expect that this should extend to a class of elliptic, pseudo-differential
operators with Coulomb singularities, since the used tools are available for such operators.
We refer to [MS] for more information on the twisted (pseudo-)differential calculus.

Maybe it would be useful for the DFT to extend the present results on pure states to gen-
eral states (see Sections 3.1.4 and 3.1.5 in [LiSe| for details). We expect that Theorem 3.9
below could be a good starting point for this purpose.

The paper is organized as follow. In Section 2, we provide a general notation, basic facts
on real analyticity, and a result on elliptic regularity, that was essentially present in [J].
In Section 3, we review the twisted calculus based on Hunziker’s twist, show how it can
be used to “desingularize” a differential equation with Coulomb singularities, and apply
elliptic regularity to the corresponding twisted equation. Section 4 is devoted to the proof
of our main results, namely Theorems 1.3, 1.4, and 1.5. The extension of these results
to a larger class of Hamiltonians is performed in Section 5. Finally, we gathered in an
Appendix some computations that are used in the main text.

Acknowledgments: The authors thanks S. Fournais and T. @stergaard Sgrensen for
fruitful discussions related to the subject of this paper.
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2 Basic tools and elliptic regularity.

To prepare the proof of the main results, we recall basic tools and state a general result
on the analytic regularity of solutions of some elliptic equations.

2.1 Notation and basic tools.

We start with a general notation. We denote by N the set of nonnegative integers. Let
p be a positive integer (i.e. p € N\ {0}). Recall that, for u € RP, we write |u| for the
euclidian norm of u. Given such a vector © € R” and a nonnegative real number r, we
denote by B(u;r| (resp. B(u;r]) the open (resp. closed) ball of radius r and centre u, for
the euclidian norm | - |.

In the one dimensional case, we use the following convention for (possibly empty) in-
tervals: for (a;b) € R?, let [a;0] = {t € Rja < t < b}, [a;b]= {t € R;a < t < b},
Ja;b] = {t € Rya <t < b}, and Ja;b[= {t € R;a < t < b}.

Given an open subset O of R? and n € N, we denote by W™?(0) the standard Sobolev
space of those L2-functions on O such that, for n’ € [0;n] NN, their distributional deriva-
tives of order n’ belong to L2(0). We denote by (-,-), (resp. || -||») the right linear scalar
product (resp. the norm) on A. In particular, W%2(0) = L*(O). Without reference to p
and O, we denote by || - || (resp. (-,-)) the L?>-norm (resp. the right linear scalar product)
on L*(0).

For two Banach spaces (A, || - ||4) and (B, || - ||5), the space L(A; B) of continuous linear
maps from A to B is also a Banach space for the operator norm || - ||z, 5) defined by

Ma
VM € L(A;B), ||M|lcam = sup [1M(a)lls
aeavioy  llalla

We simply denote £(A; A) by L(A).

Let p be a positive integer and O an open subset of RP. Let (A,| - ||4) be a Banach
space and 6 : O 2 x = (x1;--- ;%) = 0(x) € A. For j € [1;p] NN, we denote by 0,6
or d,,0 the j'th first partial derivative of §. For a € N and x € R? we set DY :=
(—i0x)* 1= (=10, )™ - -+ (=10, ), Dy = —iVy, x* 1= x{" - x7, |a] = a1 + -+ + a,
al = (ay!) - (op)), [z =27 + - + 23, and (z) == (1 + |z|?)Y/2.

We choose the same notation for the length |a| of a multiindex v € NP and for the
euclidian norm |x| of a vector x € R? but the context should avoid any confusion.

We denote by C>*(0;.A) (resp. C;°(0;A), resp. C°(0;A), resp. C¥(0;.A)) the vector
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space of functions from O to A which are smooth (resp. smooth with bounded derivatives,
resp. smooth with compact support, resp. real analytic). If A = C, we simply write

C>(0) (resp. C;°(0), resp. C°(0), resp. C¥(0)).

Now we recall basic facts on analytic functions. Take again a Banach space (A, | - ||4), a
positive integer p, and an open subset O of RP. For a smooth function 6§ : O — A, the
following properties are equivalent: 6 € C¥(O; A);

JA > 0,Vcompact K C O ,Vao € N | sup H(Dﬁ@)(X)HA < Al (aly; (2.1)
xeK

JA > 0,Vcompact K C O ,Va € N’ | sup H(DQ‘@)(X)HA < AlPHL (o)) ; (2.2)
xeK

JA > 0,Vcompact K C O ,Va € N’ | sup H(D)‘f@)(x)HA < Al (14 ool (2.3)
xeK

We refer to [H63, HS, J] for details.

Let (B,] - ||z) be another Banach space and f : A*> — B be a continuous bilinear map.
Then, for any (6;;605) € (C*(0;.A))?, the map f(01;62) : O > x — f(01(x);04(x)) € B is
real analytic.

Consider the case where A = W™?(0), for some integer n, and recall that (-,-), (resp.
||-|l) is the right linear scalar product (resp. the norm) on A. Take (6;65) € (C¥(O; A))2.
Then the map (0, 62),, : O — C, defined by (61, 05),,(x) = (01(x), O2(X))n, is real analytic.
So is also the real valued map [|61]? : O 3 x — [|01(x)]|2. In particular, taking n = 0, the
maps (01,62) : O 3 x = (01(x),02(x)) € C and [|61]]* : O 2 x — ||0;(x)|> € RT are also
real analytic.

Finally we need some specific notation to describe the structure of the considered Hamil-
tonian and of our results.

For a A-valued function 6 : R® 3 2z = (2(1; 2, 20)) s 6(2) € A, we denote by df or d.0
the total derivative of . According to the previous notation, we denote, for j € {1;2;3},
by 0;0 or 0,0 the j'th first partial derivative. For a multiindex o = (15 a5 ai3) € N3, we
set DS = (—id,)® := (—i0))* (—i0;)?2(—i03)%3, D, = —iV,, 2% = (z(M)*1(z2)ez(x(3))as

and |o| = a1 + a2 + as.

Let m be a positive integer. We write a point x € R as x = (Xy;-+* ;X,,). For any
multiindex o = (aq;- - ;) € N¥™ we set DS := (—i0,)* := (—i0y, )™ - - - (=10, )™,
Dy = =iV, x* =x7" - x% and |a] = |ag| + -+ + |-

Let m and p be positive integers. We write x € R3™ (resp. y € R?) as x = (x1;-*+ ; Xpn)

(resp. v = (y1;- -+ ;¥p)). For a A-valued function 6 : R x R* 3 (x;y) = 0(x;y) € A,
let dx© (resp. dyf) be the total derivative of § w.r.t. x (resp. y).

For n € N, W™2(R?) denotes the standard Sobolev space of L-functions on R* admit-
ting, up to order n, L? distributional derivatives. In particular, W%?(R3) = L2(R%). We
set W, = W™2(R3) and let B,, = L(W,;; W) be the Banach space of linear continuous
maps from W, to W.
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2.2 Elliptic regularity.

In this subsection, we extend, with the same proof, a regularity result that was proved
but not stated in [J].

Let (m;p) € (N*)2. Let 2 be an open subset of R*™. We consider second order differential
operators P on € x R given by

P = > calxsy) DEDY, (2.4)
(a; B)EN3M x N3P
|l +]B]<2

where the coefficients ¢, belong to C°(Q x R3; C). In particular, for x € €, the multi-
plication operator C,s(x;-) by cap(x;-) belongs to L(W,,), for all n € N.

The principal symbol of those operators P is the smooth, complex-valued function op,
that is defined on  x R3 x R3™ x R3 by

op(xyi&n) = Y cap(xiy) €7
(ar; B)EN™ X NP
|lal+|8]=2
We assume that P is (globally) elliptic. This means that there exists C' > 0 such that,
for all (x;y;&;m) € Q x R¥® x R3™ x R3P,

P + > >1 = |op(xsys&m)| = C>EP + Inf?) - (2.5)

Furthermore, we require that, for («; 8) € N™ x NP with |o| + |5] < 2, the map Q 3 x —
Cap(x;-) € By is well-defined and real analytic.

Under these assumptions on P, we note that, for all @ € N*" with |«| < 2, the function
aq : €2 — By_ja|, which maps each x € ) to the differential operator

Ga(x) = ) caplx) DY

BENS3P
1B]1<2~[a

on R? is well-defined and real analytic.

Definition 2.1. For (m;p) € (N*)2 and Q an open subset of R*™. We denote by Diff5(£2)
the set of all the differential operators P on Q) x R3P satisfying the previous requirements.

Theorem 2.2. [J]|. Let P be differential operator in the class Diff3(Q2). Let W : Q — B,
be a real analytic map. Take ¢ € W2(Q x R3) such that (P +W)p = 0. Then, the map
Q3 x> p(x;-) € Wh is real analytic.

Proof: It suffices to follow the arguments of the paragraphs “Smoothness” and “Analyt-
icity” in [J]. They make use of the basic, global pseudo-differential calculus (cf. Chapter
XVIII in [H62]). ]
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Remark 2.3. If, in Theorem 2.2, one replace 3m by some positive interger n and one
sets p = 0 and w = 0 with the convention that Q x R® = Q and Wy = C, then one
recovers exactly Hormander’s Theorem 7.5.1 in [Ho1]. We assign Theorem 2.2 to [J] since,
although it was not stated there, it was proved in a particular case and the corresponding
proof directly extends to the present, general case. In [FHHS1, FHHS2, HS], one can find
stmilar results in a slightly narrower framework. Therefore, Theorem 2.2 is more or less
known in the literature.

Remark 2.4. As already pointed out in [J], the above proof of Theorem 2.2 does not
use the most powerful tools of microlocal analysis, such as the analytic wave front set,
which could shorten some parts of the proof. We chose to use a global pseudodifferential
calculus, which s more accessible. However, we point out that one can prove Theorem 2.2
without pseudodifferential technics. In fact, the arguments used in [FHHS2] (see the proof
of Lemma 3.1) and in [HS] (see Section 3.3) can be extended to get a proof of Theorem 2.2.

3 Twisted differential calculus.

In this section, we recall the notion of “twist” used in [Hu, KMSW, MS] to “desingularize”
a class of Hamiltonians with Coulomb-like singularities.

3.1 Framework.

We need some more notation. Denoting by S? the unit euclidian sphere of R?, let 7y :
S — C and 7 :]0; +00[— R™ be two functions such that, for some 7y €]0; 1] and By > 0,
(1/B0) S |1~)0| S BO and

vVt >0, sup n(s) < By-n(t). (3.1)
t(1=mo) < s <t(1+no)

We assume further that the multiplication operator by the function n(|-|) : R® 3 2z
n(]z|) € RT belongs to LW'?(R3); L3(R?)). The multiplication operator by the function
v : R3\{0} — C, defined by vo(2) = n(|2])00(2/|2]), also belongs to L(W12(R3); L3(IR3)).

Definition 3.1. Let V be the class of functions v : R® — C such that v € C*(R?\ {0})
and there exists C' > 0 such that

Va e N? | ¥z e R®\ {0}, |2/l |Dav(z)‘ < Citlal. (Jaf!) - vo(2)] - (3.2)

We observe that, if v € V, then the multiplication operator by v belongs to the space
LOWH(R®); L(R?)).

We consider a system of m+ p electrons, interacting to one another and moving under the
influence of L fixed nuclei. Let Z, := {1;--- ;m} be the set of indices for the “external”
electronic variables x € R3" let Z; := {1;--- ;p} be the one of “internal” electronic
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variables y € R%® . and let Z, := {1;--- ; L} be the one of the nuclear variables R, € R3.
It is convenient to introduce the distinct union of those sets, namely

. UL UL, = {(a;)); a€{eisn},jeL,}.

For ¢ = (a;j) € Z. UZ; UZ,, let m(c) = a and mo(c) = j. We define X, =x; if mi(c) =,
X, =y, if m(c) =1, and X, = R; if m(c) = n. Let

P = {{ac}; (¢d)e (Z. U U In)z and ¢ # ('}

be the set of all possible particle pairings. Let © be an open subset of R3™. We consider
potentials V' where

V(x;y) € Q x R*? | Vixyy) = Z Vieey(Xe — Xo) (3.3)
{c;c'}eP

with Vie ey € V (cf. Definition 3.1), for all {c;c'} € P.

Recall that W, = W™(R3), for n € N, and By = LOW;;W,). We note that, if v € V
and {¢; '} € P, then, for any fixed x, the multiplication by the almost everywhere defined
function v(X. — X) of y belongs to By, thanks to (3.2) and the assumption on vy.

Recall that we introduced in Definition 2.1 a class of differential operators. The class of
Hamiltonians, that we want to treat, is defined in the following:

Definition 3.2. For (m;p) € (N*)? and Q an open subset of R*™. We denote by Hamy(L2)
the set of all the Hamiltonians H on Q x R such that H = P+ V., where P € Diff5(Q)
(cf. Definition 2.1) and V_ satisfies (3.3).

3.2 Heuristic.

In this subsection, we want to motivate the notion of “twist”, that is going to play a
crucial role in the proof of the main results. To explain the basic idea, let us consider the
following situation.

Take the Hamiltonian H in (1.1) with N = 2. We are not able to apply Theorem 2.2 with
x = x; and y = x5 to the equation Hvy = E1, since the map z1 — (19 — |13 — 29]71) €
By = L(WPA(R3); L2(R?)) is admittedly well defined by (1.2) but is not analytic. The
problem lies in the dependency of the Coulomb singularity on x;.

Assume that, for some open subset Q of R? and some z° € R3, we have a smooth map
f QxR — R3 such that, for all z; € Q, f(zy;-) is a smooth diffecomorphism of R?
satisfying f(z1;2°) = x;. For such zy, let U,, be the unitary implementation of f(zy;-)
on L*(R?) (the “twist”). For any function ¢ € WH?(R?) and for z; € Q,

U, (J21 — - 7'0) () = |f(2152°) = fla0)| " - (Une)(y) .

Now, since f(z1;-) is a diffeomorphism, the singularity occurs when y = x°. Therefore, it
does not depends on x; anymore. We can write

(Unlzr = 170 0) () = [2° =yl - |[f(@i;2°) = flasy)] 2" =yl oly).
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Assuming further that the map
Q31 20— |- |fana) = flar;)| € L(RY) (3.4)

is smooth, we see that Q > z; — Uy, |z — -|7'U,' € By = L(W?(R?); L*(R?)) is also
smooth, thanks to (1.2).

What can we do with the other singular terms in H? Since the terms |z; — Ry~ do not
depend on x5, the previous conjugation has no effect on them. But, if x; stays far away
from all Ry, they are not singular. We are left with the terms |zo — Ry|™!, which are a
constant function of z; with values in B; by (1.2). Since we want to perform the above
conjugation to treat the term |z; — x|™!, we need to verify that this conjugation does
not distroy the nice property of these terms. If we require that, for all £ and all x; € €,
f(x1; Ry) = Ry, and the smoothness of the map (3.4) with 2° replaced by Ry, the above
computation shows that the map Q 3 x; — Uy, |2s — Rg|_1U‘,;11 € B; is also smooth.

We just have seen that the “twisted” potential UMVUg;l1 is a smooth, Bi-valued function.
What about the “twisted” kinetic energy? A simple computation shows that the opera-
tors V,, and V,, are transformed by the twist into differential operators in the (z1;x2)
variables with explicit coefficients in terms of the derivatives of f (cf. (3.16) and (3.18)).
As we shall see below, the ellipticity of H is preserved by the “twist”.

Coming back to the original problem, we do not apply Theorem 2.2 with x = z; and
y = 23 to the equation Hi) = E1) but to the “twisted” equation (U, HU ") Uy, ¢ = EU,, 9.
Therefore, we obtain some analytic regularity of the “twisted” bound state, namely U, ¢,
not on 1 itself. But, if we are interested in the regularity of p;, we are done. Indeed, since
we can write p1(z1) = |[¢)(x1;-)||* (|| - || being the L2-norm on R?) and since U,, is unitary
on L2(R?), p1(x1) = || Uy, ¥(x1;-)||* and p; is smooth on © by composition.

We just have sketched, in the N = 2 case, the proof of the smoothness of p;, which
was performed in [J], provided there exists a map f satisfying the above requirements.
Actually it does (see Subsection 3.3 below). Now, if we further assume some appropri-
ate analyticity property of the function f w.r.t. xp, it is reasonable to expect that p; is
analytic, and, again, it is the case.

3.3 Hunziker’s twist.

With the above strategy in mind, we recall Hunziker’s twist (cf. [Hu, KMSW]) and provide
basic properties of it.

We take a real-valued cut-off function 7 € C°(R?) such that 7(z) = 0 if |z| > 1, and
7(0) = 1. Let U be the open subset of R*™ defined by

U = {xeR"™; V(c;d) €P; m(c) = eand m(c) € {e;n}, X # Xo}
={xeR™; V1<j<m ,V1<j<m,V1<(<L,x;#R, (3.5)
andj;éj’ :>Xj7éXj/}.

Let x0 = (x%---:x%) € Y. We can find some ry > 0 such that, for (j; ;') € ([1;m] N N)?
for ¢ € [1; L] NN,

|x?—Rg] > rg and j#j = |X? — X?/| EAOE (3.6)
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Let f:R*" x R3 — R? be the smooth function defined by
fx z—I—ZT Z—X)~(Xj— ?) (3.7)

Notice that, by (3.6), we have, for all x € R3™
Vie[lym]NN, e [LLNN, f(xx)) = x; and f(x;R) = Ry. (3.8)

For all (x;z) € R3 x R3, the total differential of f w.r.t. x is given by
(def)(x52) = > 7( x9)) dx; (3.9)
7j=1

where dx; : R*™ 5 x' = x; € R? for 1 < j < m. In particular, the map R*" > x
(def)(x;-) € C3°(R?; L(R®*™; R?)) is well-defined and constant. Using (3.9) and setting

C(r) = sup ||dr(z < +oo,

e )Hc(RS)

we can write, for all j € [1;m] NN, for all (z;2') € (R3)?, and for all x € R3™,

[ £ 2) = ()6 | ongsy = 052 =x0) = 7(r5 (=" =),
<nr'0(r) ]z — 7. (3.10)

For all (x;z) € R¥ x R3, the total differential of f w.r.t. z is given by, for 2¢ € R3,

m

(d. f)(x;2) - 2° = 2+ Talz ((dT)(?”al(Z — X?)) -ze)(xj — X?) ) (3.11)

j=1

For 6 > 0, set Q(0) := B(x¥;[x - x ( ;0[. Recall that the class V (cf. Definition 3.1)
depends on a parameter 7 (see (3 1)) (3 11), we can find some &y €]0; 7 /2], depending
on C(7) and rg, such that

Vx € Q(dy) stp3 H(dzf)(x; z) — I < min(ng; 1 —m9) < 1. (3.12)

3”/:(R3)
We note that the requirement oy €]0;7y/2] yields Q(dy) C U, by (3.6) and the triangle
inequality. Thanks to (3.12), for each x € Q(dy), f(x;-) is a C*°-diffeomorphism of R3.
We denote by f{(x;-) its inverse. Furthermore, for all x € Q(dy), for all (2;2") € (R?)?,

(I —m)lz — 2| <|flx2) — f(x2)] < (L+m)l|z— 2. (3.13)

By a direct computation using (3.9) and (3.11), one can express the derivative d, ¢~V
and dy f~1 in terms of d.f (see the Appendix for details). In particular, one can check
that f € C°(Q(dp) x R%R3) and f1 € C°(Q(6) x R3:R3).

Consider the map F': Q(d) x R* — R, defined by F(x;y) = (f(x;v1);- - ; F(X57p)).
For each x € Q(dy), F(x;-) is a C*-diffeomorphism of R*® and we denote its inverse map
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by F{Y(x;-). Explicit expressions for d, F, dyF, d F~", and dyF{~Y, are provided in
the Appendix. In particular, we observe that F € C°(Q(d) x R*;R%*) and F(V
Co(Q2(dp) x R3P;R3P).

We introduce the map U : Q(dy) 2 x — Uy € By (with By = L(W,) and W, = L*(R?)),
with values in the set of unitary operators on W,, defined by, for 6 € W,

(U6)(y) = |Det(dyF)(x;y)|"* - 0(F(x;y)) - (3.14)

For x € (&), the map Uy is the unitary implementation of F(x;-) on L*(R?*") and

‘1/2

(U:'0)(y) = |Det(d, =) (xy)| - 0(F (i) (3.15)

Denoting by A” the transposed of a linear map A and by DetA its determinant, we see
by a direct computation that, as differential operators on Q(dy) x R3P,
U:' D Uy = Dx + Ji(F)Dy + Jo(F), (3.16)
U.D Ut =D, + Jl(F )D + JQ(F ), (3.17)
U;' Dy Uy = J3(F) Dy + Ju(F) , (3.18)
Uc.Dy Ut = J3(FCY) Dy + gy (FEY) (3.19)

where, for x € Q(d) and y € R?, with G = F and G~ = F(=1 or with G = F~" and
G&h = F,

N(G)(xy) = ((de)(X‘ ’))T(X; v =GV (xy)),

J2(G)(x;y) = —i|Det (dy G! ) (x; | (}Det (dyG)(x;y' )|1/2> VG (i)
WOy = (@) y)) (¥ =G (sy)) .
Ji(G)(x;y) = —i|Det (d, G (x; | ( (dyG) (x; )‘1/2> VG Dixy)

Thanks to the computation written in the Appendix, we note that, on one hand, for
G e {F;F"h},

J(G) € c,;>°(9(50) x R¥; L (R, RS™) ) i1y(G) € C°(Qdy) x R¥; R¥™) | (3.20)
J(G) € 050(9(50) < R¥; L R3p) iJi(G) € CF(Qdy) x R R¥) | (3.21)

and, on the other hand, if we denote by J the multiplication operator by any component

of Ji(G), k € {1;2;3;4} and G € {F; F{~V},
J € C*(Qdo); Bo) - (3.22)

Furthermore (cf. Appendix), there exists C' > 0 such that, for G € {F; F\=U}, for all
(x;y) € () x R, J3(G)(x;y) is invertible and

7 > JB@ ) gy + 1@ 59)) gy = € (3.23)
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Now, using (3.18),
Dy Uy = Uyx(J5(F)Dy — Ju(F))

thus, for all x € Q(dg), we see, by induction and by (3.21), that Uy leaves W, invariant,
for all n € N. Similarly, we can show, using (3.19) and (3.21), that, for all x € Q(dy), U !
also leaves W, invariant, for all n € N. By the same arguments, we can check, starting
from (3.16) and (3.18), that U preserves the space W2(Q(dp) x R3).

3.4 Potential regularization by a twist.

We first consider the action by conjugation of the twist U on the potential part V of
Hamiltonians H in the class Hamy(£2).

Proposition 3.3. Takex’ € U C R¥". We choose rq > 0 and &y €]0;ro/2] such that (3.6)
and (3.12) hold true. Recall that the neighbourhood (&) := B(xY; 6o[x -+ x B(x%; o[ of

x% 4s included in U.

Then, for any v € V and any {c;c'} € P, the map Q(dy) 3 x — Uw(X, — XU € By
1s well-defined and real analytic.

Remark 3.4. We point out that the Coulomb potential | - |~' does belong to V. Indeed,
(3.2), for v =1y = |- |7, was proved in [J] and the multiplication by this vy belongs to
LOW2(R3); L3(R3)) by Hardy’s inequality (1.2).

Remark 3.5. A proof of Proposition 3.3 is essentially available in [Hu, J|. However, the
proof in [Hu| is restricted to Coulomb interactions. We provide below a more transparent
version of the proof in [J].

Proof of Proposition 3.3: Let x € Q(d). Recall that, for k € {0;1}, U and U_ ! leave
Wi invariant. Recall that, for all {¢; ¢’} € P, the multiplication by v(X. — X~ ) belongs
to By. Therefore the map w : (&) 3 x — Uw(X, — Xo)U! € By is well-defined. We
treat all possible cases for {c;c'} € P.

If m1(c) = m () = n, then w: Q(dy) 3 x = v(X. — X) is a constant.

Assume that m(c) = e and m(¢’) € {e;n} or that m(¢/) = e and m;(c) € {e;n}. Since
Q(dp) CU, X, — X does not vanish on 2(dp). Thus w : Q(dy) 3 x — v(X. — X) is real
analytic, by composition.

Assume that 71 (c) = e and 7 () = i. Let j = ma(c) and k = ma(¢’). Then, for x € Q(dy),
U (X, — Xo)UZ! is the multiplication operator on W; by the function

y = u(x — flxw) = o(f(xx) — fxve),

by (3.8). Let j' € Z.. Using the fact that d,f does not depend on x (see (3.9)), we have,
for o« € N* and yy # x,

o2, (v(f(xix) = flxwn)) ) (3.24)
= @) () — foay)) - (F05' 6 —x0) - (5 v —x00))
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Using successively (3.10), (3.13), and (3.2), we obtain

oz, (v(705) = Fs )|

< @) (f6s) = Fesyw)] - (gt CE) IS = wal)
< @) (Fs) — Feay)] - (o —m) ™ 0) [Fxd) — Feewl)
< O (Jalt) - oo (F0x ) = Fxiv)|

for some C; > 0. Now, by the structure of vy and by (3.13) and (3.1), we derive that, for
some positive constants Cy and Cj,

o2, (v(fxixd) = fxiv))|

laf

Gy (Jalt) - n(fesx9) = fesva)
< G (Jaf!) (1) — val) - (3.25)

IN

Now, one can check, by induction on |a| and by the fact that the multiplication by
n(|-|) belongs to By, that, on Q(dg), the 0%, partial derivative of w exists and maps each
J

x € Q(dp) to the multiplication operator on Wi by the almost everywhere defined function
(3.24) of y. Thus, w € C*(£2(dy); B1). Using (3.25) again, we obtain that

<o) |05, < 7 (lal) (3.26)

for some Cy > 0. By (2.2), w is real analytic w.r.t. x;;. Since this holds true for all j', w
is real analytic.

Similarly, we can treat the case m(¢) =i and m(¢') = e.

Assume that m1(c) = n and m(¢) = i. Let £ = my(c) and k = ma(c). For x € Q(dp), w(x)
is the multiplication operator in B; by the function

y = v(Re — f(x5y1) = o(f(x5Re) — f(X598)) (3.27)

by (3.8). We redo the computation (3.24) - (3.25), with x} replaced by R,. Furthermore,
we also can check that the 0¢ partial derivative of w exists and maps each x € 2(dp) to
the multiplication operator on W, by the almost everywhere defined a;gj , partial derivative
of (3.27). Using the new estimate (3.25), we derive a bound like (3.26). As above, we
conclude that w is real analytic.

Again, we have a similar treatment of the case m(c¢) = ¢ and m () = n.

We are left with the case m(c) = i and m () = i. We set k = m(c) and k' = my().
By assumption, k # k’. Using (3.8) again, we see that, for x € Q(dp), w(x) is the
multiplication operator in B; by the function

vy = o(fsye) — flxyw)) . (3.28)

Once again, we perform the computation (3.24) - (3.25) and follow the above arguments,
using this time that the multiplication by y — n(|yx — yx|) belongs to B;. This yields the
real analyticity of w. O
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3.5 Twisted regular differential calculus.

Next, we let act the twist U by conjugation on the regular, differential part P € Diff5(Q2)
of Hamiltonians H in the class Hamy(2) (cf. Definitions 2.1 and 3.2). It turns out that
this action preserves this class Diffy(Q).

Proposition 3.6. Let x® e UNQ C R¥. Take ro > 0 and 6 €]0;70/2] such that (3.6)
and (3.12) hold true, and such that Q(8) := B(x};d[x -+ x B(x2;00[C Q. We recall
that Q(6) CU. Let us define U* : Q(d) 2 x> Ut € By.

Let P € Diffy(Q) (see Definition 2.1). Then the operator composition P = UPU* defines
a differential operator on Q(8g) x R3 that belongs to Diffy(2(d)).

Remark 3.7. In [Hu, J], it was proven that the twisted Laplacian UAU* is elliptic, when
m = 1. Proposition 3.6 shows that the conjugation by the twist of an elliptic operator is
also elliptic. This property is actually used in [KMSW, MS] in a semiclassical framework.

Remark 3.8. In the proof of Proposition 3.6 below, we essentially follow [Hu, J]. Ob-
serving that U is a Fourier integral operator (cf. [GS, H64]), one can use composition
rules for such operators to derive the relationship between the principal symbols of P and
P, given in (3.30) below.

Proof of Proposition 3.6: Take P € Diff5(£2), that is of the form (2.4). We first observe
that, for (o; 8) € N3 x N* with |a] + |B] < 2, UcagU* is, as differential operator, the
multiplication operator by the function

Q(5) x R? 5 (x;y) +— ca/;(x;F(x; y)) ,

which belongs to Cg°(2(dy) x R*; C). Using (3.17) and (3.19) componentwise and taking
advantage of (3.20) and (3.21) for G = FV we see that P = UPU* has the form (2.4)
on (&) x R* with coefficients in Cp°(2(dy) x R3; C).

We are left with the proof of the ellipticity of P. To this end, we compute its principal

symbol op. Let us denote by “” the scalar product in R?, for any d € N*. It is well-known
that the total symbol of P is the map Sp : Q(dy) x R x R¥" x R* — C defined by

SplsiviEn) = eI (329
Using this, we obtain in the Appendix that, for (x;y;&;n) € Q(d) x R x R3™ x R,
op(xy;i&n) = op(x Fiy) §+ W(FEN)sy)ms J(FCY)(sy)m) . (3.30)

Since P is elliptic, there exists C' > 0 such that (2.5) holds true with P replaced by P
and C replaced by C. Take (&;7) satisfying [£]? + |n|* > 1. Then

Clop(syi&n) = &+ H(FC) ym|” + [J(F) s ym|” (3.31)
By (3.20), we can find M > 0 such that, for all (x;y) € Q(dy) x R,

HJl(F<*1))(X;y)”L(Rgp;RSm) < M.
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Now let S = /1 +4M?2. Consider first the case where S|n| < (|¢|> + [n|>)'/2. We have
2M|n| < |£]. Thus
€17

€ + S (FE) ey > =

and, using (3.23), we obtain from (3.31) the lower bound
C™lop(x;yi&n) > min(1/4,C*)(IE* + nf*) -
If, now, S|n| > (|€|> + |n|?)'/2, it follows from (3.23) and (3.31) that
Clop(xyy;&5m) > C2ST2 (I + [nl?) -
This yields (2.5). Thus P € Diff5(Q(do)). O

3.6 Elliptic regularity for twisted Hamiltonians.

Now, we conjugate by the twist U any Hamiltonians H of the class Hamy(£2) (cf. Defini-
tion 3.2) and show that we can apply Theorem 2.2 to the twisted operator.

Theorem 3.9. Let Q be an open subset of R and x° € U N Q. Then, one can find a
neighbourhood Qg of x° and a unitary operators valued map U : Qo > x — Uy € By such
that the following holds true:

For any Hamiltonian H € Hamy(Q) on Q x R C R3™P) for any ¥ € W22(Q x R%)
such that HV = 0, the map UV : Qy > x — UV(x;-) € Wy is well-defined and real
analytic. Furthermore, for any a € N> with 1 < |a| < 2, the map U(D2V) : Qg 3 x —
Ux(DGW)(x;-) € Wa_qa| is well-defined and real analytic.

Proof: Given x° € U N Q, take Qy = Q(Jy) satisfying the assumptions of Proposition 3.6
and consider the twist U : Qo — By defined by (3.14). Recall that U* : Qo 3 x+— U €
By. Take H = P+ V € Hamy(Q) and ¥ € W?2%(Q x R*) such that H¥ = 0. Applying
Proposition 3.3 to each term of V and Proposition 3.6 to P, we see that P = UPU* and
W = UV U* satisfy the assumptions of Theorem 2.2 on €2, yielding the real analyticity
of the map UV : Q 3 x — U U(x;-) € Wh.

By (3.17), we have, for x € Q, setting J; := J1(F{™Y) and Jy 1= Jo(FY),

Uy (DX\I/) (x;-) = UD U UV(x;-)
= DX(UX\If(x; )) + Ji(x;0) - Dy(UX\I/(x; )) + Ja(x; ~)(UX\II(X; )) )

By (3.20), this implies that, for & € N3 with |a| = 1, U(D2¥) : Qg 2 x > U, (DV)(x; ) €
W is well-defined and real analytic. Letting act U,D,U_"! on the above equality and us-
ing (3.17), (3.20), and (3.21), we obtain that, for a € N*" with |a| = 2, U(D2¥) : Qg >
x = Uy (D2U)(x;+) € W, is well-defined and real analytic. O

Remark 3.10. We observe that the present framework (the one in Theorem 3.9) is closer
to the one in [KMSW] than the one in Hunziker’s original paper [Hu]. This comes from
the fact that, here and in [KMSW], the considered Hamiltonian contains derivatives w.r.t.
the “external” variable x, whereas it is not the case in [Hu]. We further point out that a
variant of Hunziker’s twist is used in a similar way in [MM].
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4 Proof of the main results.

In this section, we provide a proof for our main results, namely Theorem 1.3, Theorem 1.4,
and Theorem 1.5. We first prove the result on the current density C'.

Proof of Theorem 1.3: Let 2° € R*\ {Ry, -+, R.}. Notice that, if we set m = 1 and
p=N—1,thend =R3\ {Ry,---,R.}, by (3.5). Note that H := H — F € Ham(R?)
and Hvy = 0. Applying Theorem 3.9 to Q = R = R? and x° = 2° € U N Q, there
exists some neighbourhood € of 2% and a map U : Qy > « — U, € By, the values of
which are unitary operator on W, such that, for all a € N* with |a| < 1, the map
U(DSY) : Qo 2 & = Ug(D2Y)(x;-)) € Waq) is well-defined and real analytic.

Let a € N3 with |a| = 1. For z € , we can write, since U, is unitary,

<(D5¢)($a),¢(%)> = <U$(Dgw>(l‘7)7Ux¢(‘r7)>

As the scalar product of real analytic, Wy-valued maps, the map Qy > x +— ((D3), ) is
also real analytic. This gives the desired result by (1.5). ]

Next we come to the proof of Theorem 1.4 on the densities p,. We also comment on the
limitation on the analyticity domain in this result (cf. Remark 4.2).

Proof of Theorem 1.4: Take an integer k such that 0 < k < N. Let 2° = (29;--- ;20) €

Ll,il). Setting m = k and p = N — k, we observe that u,g” coincide with the set U, defined
n (3.5). Since —A = —A, — A, € Diffy(R*") and V — F is a potential of the type V in
(3.3) on R?™ x R*, by Remark 3.4, we may apply Theorem 3.9to H = H — E, Q = R3™,
U =1, and x* = 2° € U N Q. Thus there exist some neighbourhood €y of 2° and a
map U : Qg — By, with values in the set of unitary operators on W, such that the map
U : Qo> z— Ug(z;-) € Wy is well-defined and real analytic. For z € €, the density
pr(z) is, by definition (see (1.3)), the squared Wy-norm of v (z;-), which is also the one
of Uyp(z;-), since U, is unitary on Wy. Thus, py is real analytic on €. O

Remark 4.1. In the k =1 case, the above proof reproduces the one of [J] on the density
p = p1. Thanks to Hunziker’s tuist, the proof in the general case is essentially identical.

Remark 4.2. Theorem 1.4 ensures the real analyticity of pr on Mél). We actually can
give two obstacles to the extension of this property to a larger set by the method used in
Section 3.

If we try to apply this method near a point z°

z? € Cp, U Ry, we have to work near the
singularity of a term of the form |x; — Re|™" or |z; — xp|™! with 1 < j # j' <k and such
a singular term would be unaffected by any twist. Thus, we cannot apply Theorem 2.2 to
the twisted equation to get the result of Theorem 3.9.

The second obstacle takes place in the construction of the twist near such a point z° €
Cr URyg. To explain this, let us use the notation of Subsection 3.3 and consider a point
x? such that, either X? = Ry or X? = X?,, for j # j'. Assume that we have a function f
defined on a neighbourhood of such x° times R3 such that, for x close to x°, f(x;-) is a

diffeomorphism on R® that satisfies (3.8). Ifx] = xJ,, then, forx close to x" with different
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x; and Xj, we would have x; = f(x;x)) = f(x;x%) = xj, which is a contradiction. If
X? = Ry, then, forx close tox® with x; # Ry, we would havex; = f(x; X?) f(x; Ry) = Ry,
which s again a contradiction.

Finally, we prove Theorem 1.5 concerning the density matrices 7. Again we provide a
comment on the limitation on the analyticity domain in this result (cf. Remark 4.4).

Proof of Theorem 1.5: Let k be an integer between 0 and N. Let 2° = (29;--- ;2?)
and 20 = (2%;-- ;) two points in (R®)¥ such that (z%;2°) € U Setting m = 2k
and p = N — k, we note that U = Z/I,?). Denoting by y the variable in R3WV=2%) = R we
consider the Hamiltonians H; and Hy on (R3)2 x R3(N=2k) = R3™ x R defined by

H = -A, — Ay — Ay + V(z;y) and Hy = =A, — Ay — A, + V(2';y)

and the almost everywhere defined functions Wy : R¥ xR* 3 (z;2/;y) — ¢ (x;y) and Uy :
R3™ x R¥ 3 (z;2';y) — ¥(2';y). We note that H; € Hamy(R3") and Hy € Hamy(R3™).
From Hvy = E1i, we derive that HiW, = EV; and Hy,V; = EV,, in the distributional
sense. Furthermore, for any bounded subset B of R3™, we observe that

Uy e W**(BxR¥P) and VU, e W>?(BxRY).

Let By be a bounded neighbourhood of (zY; a:/ ).

Now we apply Theorem 3.9 to Q2 = Bo and x¥ = (2% 2°) € UNQ. Therefore there exist a
bounded neighbourhood Qg of (2% 2°) and a map U : Qy — By, with values in the set of
unitary operators on W, such that the maps UV, : Qo > (z;2') — UpwVi(z;2';-) € Wh
and UWVy : Qo 3 (2;2') = UpwVa(z;2';-) € Wa are well-defined and real analytic. Now,
by definition of - (see (1.4)), we have, for (z;z) € Qo,

Y(z;a) = (Wi(z;a's-), Ualz;ase) = (UweVi(z;2's-), Upw Ualz; 25 ),

since U, is unitary. As the scalar product of real analytic, Wp-valued maps on €y, 7y is
also real analytic on 2. O

Remark 4.3. We note that our proofs of Theorems 1.3, 1.4, and 1.5, have a commun
structure. They all use an appropriate twist and Theorem 3.9. Differences between them
occur in the used set of variables.

Remark 4.4. According to the ﬁrst obstacle mentioned in Remark 4.2, the method of
Section 3 requires to work on Ll,gl X U,il) Now, because of the second obstacle mentz’oned

there, we also need to exclude the set c,i and, therefore, work on L[(Z) ( )\C

5 Extensions.

In Section 3, we worked in a larger framework than the one that would be needed to treat
the physical operator H in (1.1). It is thus natural to expect that our main results on H
extend to a larger class of Hamiltonians. This is the case, as we shall see in this Section.
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We consider again a system of NV electrons, interacting to one another and moving under
the influence of L fixed nuclei. Let Z := {1;--- ; N} be the set of indices for the electronic
variables * € R3 and let Z,, := {1;--- ; L} be the one of the nuclear variables R, € R3.
It is convenient to introduce the distinct union of those sets, namely

ZTUTZ, = {(a;5); ac{esn},jel,}.

For ¢ = (a;j) € Z. UZ,, let m(c) = a and my(c) = j. We define X, = z; if m1(c) = e and
X.=R; if m(c) =n. Let

P o= {{e;d}s (¢;d) € (Zou In)Q and ¢ # ¢}
be the set of all possible particle pairings. We consider a potential V where

Vx € RSN ) ‘7(*%) = Z ‘/{c;c’}<Xc - Xc/) ) (51)
{¢;c'}eP

with Vie ey € V (cf. Definition 3.1), for all {c;c'} € P.
Now, let P = P(z; D,) a differential operator on R3" of the form

P = Y éfx)DS, (5.2)

aeN3N
| <2

where the coefficients ¢, belong to C*(R3Y;C). Let H = P+ V and assume that there
exists ¢ € W*?(R3*) such that Hip = 0. For 0 < k < N, we still denote by py, v, and C
the objects that are respectively defined by (1.3), (1.4), and (1.5), with ¢ replaced by 1.

Theorem 5.1. Under the above assumptions on H and 1@, the results of Theorems 1.3,
1.4, and 1.5, are valid.

Proof: We can follow the above proofs of Theorems 1.3, 1.4, and 1.5. In the later, we
use the elliptic operators

Hy = —Ay —P(z;y: Dy D)+ V(z;y) and Hy = —A, — P(2;y; Dy; D) + V(2 y)

and the almost everywhere defined functions Wy : R*" x R¥ 3 (z;2';y) — Y(z;y) and
Uy R X R?P 5 (252 y) — (s y). -

Remark 5.2. We point out that the present class of operators includes Laplace-Beltram:
operators associated to appropriate metrics. One can also replace D, by D, — A(x), where
A is a real analytic vector potential in C3°(R3Y;R?), and add an external electric potential
V. in C°(R3N; C), that is also real analytic.

Notice that the class V in Definition 3.1 contains non-radial pair potentials. Among the
admissible functions n used to define V, we have 0 < t — t=1 but we can also choose
0 <t t1(In(t))"¢, with e > 0. We observe that this class V is contained in the class of
pair potentials used in [FS].
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A Appendix

In this Appendix, we provide explicit formulae for several objects related to the twist U in
Subsection 3.3 and the computation of the principal symbol of some differential operator,
that is needed in Subsection 3.5.

First of all, let us notice that, from the expressions of d f and d, f, there exists some 7,
ro, and x° dependent constant M, such that, denoting by I3 the identity on R3,

Vx e R V2 €R®, |2| > M = ((def)(x;2) = Oand (d.f)(x;2) — I3 = 0). (A.1)
Using (3.12), we can find some ¢ > 0 such that
Ysi2) € 000) x B e < [|((@) (52)) My + 1@ (059 ) < €0 (A2)
For x € (&), j € NN [1;m], and z € R3, we have
Ff(xf(x2) = 2.

By differentiation of this equality and by using (3.9), we obtain, with equalities in £(R3),
in £(R?), and in £(R3>™;R3), respectively,

(df ) (x5 f(x52)) = ((df)(x52) (A3)
(d ) (x5 f(52) = =7(r"(z =) (daf TY) (x5 f(x52)) (A.4)
(dxf<_1>)(x;f(x; z)) = — (dzf<_1>)(x;f(x; z)) o 4 T(TO (z — X?,)) dx;r . (A.5)

Now, using (A.1), (A.2), (A.3), (A.4), and (A.5), it is straightforward to check that
fFeCR () x RERY) and  fT € 2 () x R*%R?) . (A.6)
From the very definition of F, we note that, for x € (&), x® € R*™, and y € R,
(dF)(x;y) - x = ((df)xy1) x5 - 5 (df)(x5yp) - x) € R
and the k-th component (with & € NN [1;p]) in the latter expression is given by

(df) (x5 y8) - ZT yk—x))xjeR3,

7j=1
by (3.9). For x € Q(&), y € R, 2 € R®, and k € NN [1; p], we have
(dy, F)(xy) -2 = (05505 (dof)(x5y%) - 2; 05 -+ 5 0) € RP
(the term containing z being in the kth position) and, for y¢ € R3P,

p
(dyF)(x =) (0 (o f)(xye) - yE; 05 - 5 0) € R

k=1
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3 30055 05 (@D v~ ) 35— K): 051 0),

k=1 j=1

by (3.11), each term containing d7 being in the kth position. Since we can write, for
x € Q(d) and y € R?,

Fl(xy) = (Fxy); 5 f7%(xy) € R,
we have, for x¢ € R3™,
(&F") (x: F(xy)) - x©
= ((def") (s fayn)) x5 o (defTY) (x5 F(x3yp)) - x°) € R,
where d, f{~1 is given by (A.5). Finally, for y¢ € R*, we have

(dyFTY) (s F(xy)) - ¥

p
(05505 (dafV) (x5 f(xsym) - ¥53 05 -+ 50) € R,

k=1

where d, f¢1 is explicited in (A.3).
We derive from (A.6) that

F e CR(Qdp) x R¥;R¥) and FTV € C°(Q(d) x R R*) (A7)

Next, we compute the terms J,(G), for 1 < k < 4 and G € {F; F{=Y}, that appear in
(3.16), (3.17), (3.18), and (3.19).

Let G € {F;F~Y}. Let us consider the smooth functions pi € C®(€2(d) x R?*;R)
defined by

pe(xiy) = |Det(d,G)(x:y)|"” and p_(xiy) = |Det (d,G)(xy)|".
From the identity G~V (x; G(x;y)) = (x;y), we derive that p(x;y)p_(x;G(x;y)) = 1.
Let ¢ € C®(2(dy) x R*;R). We set
Uep)(xiy) = pilxiy) p(xGxy) and (U5 Ve)(xy) = p-(xy) (G (xy)).
Since
& (USV9)(xy) = (G0 (xy)) dep-(x;y)
+ p-(5¥) (dep) (x: GV ()
+ po(x5y) (dyp) (G0 (x57)) (A GV (x5)
we have, for x, € R3™,
d (U5 0) (xy)xe = (G (xy)) Vep_ (x57) - %
+ p-(xy) (Vap) (G ( Y))
+ - (57) (Vyp) (x5 GV (x5 y)) -

AN

) (xy)xe
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with scalar products in R?”, R3™, and R, respectively. This yields
VL (US9) (xy) = (G (xy)) Vip(x:)
+ p-(x3y) (Vap) (x: GV (x3y)
+ p-(x55y) (G (x7)(Vy) (x5 GV () -
Thus, using p+ (x;¥)p- (% G(x;¥)) = 1,
(UeVUE ) (x55) = pa(xsy)p(xy) (Vap-) (x5 G(x55)) + (Vi) (x37)
+ (G (Gl y)) (Vi) () -
Since
dy(UC(;DSD) (xy) = SO(X§ G<_1>(X; y)) dyp_(x;y)
+ p-(5y) (dyp) (x5 GV (x5 7)) (A GTV) (x5y)
we have, for y, € R,
dy (US0) (x;v)ye = (G (xy)) Vypo (x5) - ve
+ p-(xy) (Vyo) (x5, GV (x5y) - (dyGY) (x5 y)ye
with scalar products in R3. This yields
Vy (UG e) (xiy) = ¢(x G (xy)) Voo (x5)
+ p-(x5¥) (G (x7)(Vye) (x5 GV (7)) -
Thus, using p4 (x;¥)p- (% G(x;¥)) = 1,
UV US0) (x55) = pa(sy)e(xy) (Vypo) (3 G(x:))
+ (dGV) (x: Gl ) (Vyp) (x5)

This proves (3.16), (3.17), (3.18), and (3.19). Now, taking into account (A.7), we obtain
(3.20) and (3.21). Using (A.2) and (A.3), we see that (3.23) holds true.

Finally, we compute the principal symbol op appearing in the proof of Proposition 3.6.
In the vector space of polynomials in R¥™ x R with Cg°(Q2(dg) x R3; C)-coefficients, we
denote by = the equality of polynomials modulo polynomials of degree less than 2. Then,
for (x;y;&;m) € () x R x R3™ x R, we have, by (3.29), (3.17), and (3.19),

op(x;y;€:1)
Sp(x;y:&m)
Y. cas(xiFlxy) (f + L(FE) (xiy)n + S (FED) (x; y>>

(a; B)EN3M N3P
o] +]B]=2

X <J3(F<_1>)(X; y)n + J4(F<_1>)(X; Y)>B

= Y c(xFP(xy) (5 + L (FT) (xy) n>a<J3(F<‘1))(X; y) n)ﬁ
(o B)EN3M X N3P
laf+|8|=2
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and the last term is actually op(x;y;&;n), since it is homogeneous of degree 2. Thus

op(x;y;&m) = UB(XS F(x;y); €4+ L(FE) (xy)m; Js(FCY) (x5y) 77) :

yielding (3.30).
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