Rappels sur \mathbb{C} .

Exercice 1. : Applications \mathbb{R} -linéaires et \mathbb{C} -linéaires.

- 1. Soit $L: \mathbb{C} \longrightarrow \mathbb{C}$ une application \mathbb{C} -linéaire. Montrer qu'elle est \mathbb{R} -linéaire.
- 2. Soit $w \in \mathbb{C}$ et L_w la multiplication par w c'est-à-dire l'application $L_w : \mathbb{C} \longrightarrow \mathbb{C}$ donnée par, pour $z \in \mathbb{C}$, $L_w(z) = wz$. Montrer que L_w est \mathbb{C} -linéaire.
- 3. Soit $w \in \mathbb{C}$ et L_w la multiplication par w. D'après les questions précédentes, L_w est \mathbb{R} -linéaire. Donner la matrice de L_w dans la base canonique (1;i) du \mathbb{R} -espace vectoriel \mathbb{C} en fonction des coordonnées $(x_0; y_0)$ de w dans cette base.
- 4. Soit $L: \mathbb{C} \longrightarrow \mathbb{C}$ une application \mathbb{C} -linéaire. Montrer qu'il existe $w \in \mathbb{C}$ tel L est la multiplication L_w par w. (Indication : on prendra w = L(1).)
- 5. Soit $L:\mathbb{C}\longrightarrow\mathbb{C}$ une application \mathbb{R} -linéaire. Soit

$$A := \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) ,$$

avec $(a; b; c; d) \in \mathbb{R}^4$, la matrice de L dans la base canonique (1; i) du \mathbb{R} -espace vectoriel \mathbb{C} . Montrer que L est \mathbb{C} -linéaire si et seulement si a = d et b = -c. Dans le cas où a = d et b = -c, que vaut le w du 4?

6. Montrer que la conjugaison complexe $\overline{\cdot}: \mathbb{C} \longrightarrow \mathbb{C}$ donnée par $\overline{\cdot}(z) = \overline{z}$, le conjugué de z, est \mathbb{R} -linéaire mais n'est pas \mathbb{C} -linéaire.

Remarque : les points 2 et 3 montre qu'une application $\varphi : \mathbb{C} \longrightarrow \mathbb{C}$ est \mathbb{C} -linéaire si et seulement s'il existe $w \in \mathbb{C}$ tel φ est la multiplication L_w par w.

Exercice 2. : Produit scalaire et module. Soit $z_1 = (x_1; y_1) \in \mathbb{C}$ et $z_2 = (x_2; y_2) \in \mathbb{C}$. On rappelle que le produit scalaire $\langle z_1; z_2 \rangle$ est donné par $x_1x_2 + y_1y_2$.

- 1. Vérifier que $\langle z_1; z_2 \rangle = \operatorname{Re}(z_1\overline{z_2}) = \operatorname{Re}(z_2\overline{z_1})$.
- 2. Vérifier que $z_1\overline{z_1}$ est un réel positif et que $|z_1| = \sqrt{z_1\overline{z_1}}$.
- 3. Montrer que les propositions suivantes sont équivalentes :

$$\mathcal{P} := (\forall (z_1; z_2) \in \mathbb{C}^2, |z_1 + z_2| \le |z_1| + |z_2|),$$

$$\mathcal{Q} := (\forall (z_1; z_2) \in \mathbb{C}^2, ||z_1| - |z_2|| \le |z_1 - z_2|).$$

(Indication: on changera le nom des variables dans l'une des propositions.)

4. On remarque que l'inégalité dans \mathcal{P} est une égalité si $z_1=0$ ou $z_2=0$. On suppose désormais $z_1\neq 0$ et $z_2\neq 0$. Montrer que

$$(|z_1+z_2| = |z_1| + |z_2|) \iff (\exists \lambda \in \mathbb{R}^{+*}; z_1 = \lambda z_2) \iff (\operatorname{Arg}(z_1) = \operatorname{Arg}(z_2)).$$

5. Montrer que le module est aussi une norme sur le \mathbb{C} -espace vectoriel \mathbb{C} .

D'après le cours, la proposition \mathcal{P} est vraie. C'est l'inégalité triangulaire.

Exercice 3.: Soit $(w; z) \in \mathbb{C}^2$ tel que $\overline{z}w \neq 1$, |w| = |z| = 1. Montrer que

$$\left| \frac{z - w}{1 - \overline{z}w} \right| = 1.$$

Exercice 4.: Soit $\theta \in \mathbb{R}$. Pour $n \in \mathbb{N}^*$, on pose

$$E_n := \sum_{k=0}^{n-1} \exp(ik\theta), C_n := \sum_{k=0}^{n-1} \cos(k\theta) \text{ et } S_n := \sum_{k=0}^{n-1} \sin(k\theta).$$

- 1. Soit $n \in \mathbb{N}$. Écrire E_n comme une fonction de n.
- 2. En déduire une expression de C_n et S_n en fonction de n.
- 3. Que peux-on dire de E_p si $p \in \mathbb{N}$ vérifie $p\theta \in 2\pi\mathbb{Z}$?

Exercice 5.: Soit $\theta \in [0; 2\pi[$.

- 1. Donner le module et un argument de $z = e^{i\theta} 1$.
- 2. Montrer que $|e^{i\theta}-1| \leq \theta$. (Indication : on pourra appliquer le théorème des accroissements finis à une fonction appropriée.)

Exercice 6.: Soit $(z_1; z_2; z_3) \in (\mathbb{C}^*)^3$ tel que $z_1 + z_2 + z_3 = 0$ et $|z_1| = |z_2| = |z_3|$.

- 1. Montrer que $|z_1-z_2|=|z_1-z_3|=|z_2-z_3|$. (Indication : on pourra mettre les z_j sous forme exponentielle.)
- 2. Interpréter le résultat précédent.
- 3. Donner un exemple de triplet $(z_1; z_2; z_3)$ qui vérifie les hypothèses précédentes. (Indication : on pourra s'inspirer de l'exercice 4.)

Exercice 7.: On donne ici une expression pour l'argument principal d'un nombre complexe non nul. On introduit les sous-ensembles suivants de \mathbb{C}^* :

$$\Omega_{+} := \left\{ z \in \mathbb{C} \; ; \; \operatorname{Re}\left(z\right) > 0 \right\} \; \operatorname{et} \; \mathbb{R}^{-} \; := \; \left\{ z \in \mathbb{C} \; ; \; \operatorname{Re}\left(z\right) < 0 \, \operatorname{et} \; \operatorname{Im}\left(z\right) = 0 \right\}.$$

- 1. Vérifier que, pour $z \in \Omega_+$, $Arg(z) \in]-\pi/2;\pi/2[$.
- 2. Montrer que, pour $z \in \Omega_+$,

$$Arg(z) = Arctan\left(\frac{Im(z)}{Re(z)}\right). \tag{1}$$

- 3. Vérifier que la formule (1) est fausse pour z = i 1.
- 4. Soit $\theta \in]-\pi;\pi[$. Vérifier que

$$\tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1 + \cos(\theta)}.$$

5. En déduire que, pour $z \in (\mathbb{C} \setminus \mathbb{R}^-)$, on a

$$Arg(z) = 2Arctan\left(\frac{Im(z)}{Re(z) + |z|}\right). \tag{2}$$

Exercice 8.: Soit $(z_1; z_2) \in (\mathbb{C}^*)^2$ tel que $z_1 \neq z_2$. La droite \mathcal{D} passant par z_1 et z_2 est, par définition, l'ensemble

$$\{z \in \mathbb{C}; \exists \lambda \in \mathbb{R}; z - z_1 = \lambda(z_2 - z_1)\}.$$

Le vecteur $z_2 - z_1$ est un vecteur directeur de la droite \mathcal{D} . Par définition, le segment reliant z_1 à z_2 , noté $[z_1; z_2]$, est

$$\{z \in \mathbb{C} \; ; \; \exists \lambda \in [0;1] \; ; \; z - z_1 = \lambda(z_2 - z_1) \} \; .$$

1. Montrer que

$$\mathcal{D} = \left\{ z \in \mathbb{C} \, ; \, \exists \, t \in \mathbb{R} \, ; \, z = t z_2 + (1 - t) z_1 \right\}$$

et que

$$[z_1;z_2] \ = \ \left\{z \in \mathbb{C} \, ; \ \exists \, t \in [0;1] \, ; \ z \ = \ tz_2 \, + \, (1-t)z_1 \right\}.$$

- 2. Soit $z \in \mathbb{C}$. Montrer que iz est orthogonal à z.
- 3. En déduire que

$$\mathcal{D} = \left\{ z \in \mathbb{C} ; \left\langle z - z_1; i(z_2 - z_1) \right\rangle = 0 \right\}.$$

Exercice 9.: Soit $(z_0; z_1) \in \mathbb{C}^2$ et $(r_0; r_1) \in (\mathbb{R}^{+*})^2$.

1. Montrer l'équivalence

$$D(z_0; r_0[\cap D(z_1; r_1[\neq \emptyset \iff |z_0 - z_1| < r_0 + r_1)]$$

2. Montrer l'équivalence

$$D(z_0; r_0[\subset D(z_1; r_1[\iff |z_0 - z_1| + r_0 \le r_1]))$$

- 3. Soit $z_0 \in \mathbb{C}$ et r > 0.
 - a). Montrer que $D(z_0; r[$ est un ouvert qui est étoilé par rapport à z_0 .
 - b). Montrer que $D(z_0; r]$ est un fermé.
 - c). Montrer que $\overline{D(z_0; r[} = D(z_0; r].$
 - d). Montrer que

$$C(z_0; r) = \{ z \in \mathbb{C} ; |z|^2 - z_0 \overline{z} - z \overline{z_0} + |z_0|^2 = r^2 \}.$$

(Indication : pour $z \in \mathbb{C}$, on pourra développer $|z - z_0|^2$.)

En particulier, l'intérieur de $D(z_0; r[$ est $D(z_0; r[$ et son bord, défini comme étant son adhérence privée de son intérieur, est $D(z_0; r[$ $) \setminus D(z_0; r[$ $) \in C(z_0; r)$. En fait, on peut montrer que $D(z_0; r[$ est convexe.

4. Soit B une partie non vide de \mathbb{C} . Montrer que B est bornée si et seulement s'il existe $z_0 \in \mathbb{C}$ et $r_0 > 0$ tel que $B \subset D(z_0; r_0]$.

Exercice 10.: Soit A une partie non vide de \mathbb{C} et $z \in \mathbb{C}$. On rappelle que z est un point d'accumulation de A si, pour tout r > 0, $(D(z; r[\setminus \{z\}) \cap A \neq \emptyset)$. On rappelle qu'un point $a \in A$ est isolé s'il existe r > 0 tel que $D(a; r[\cap A = \{a\})$.

- 1. Soit $D := \{1/n; n \in \mathbb{N}^*\}$. Montrer que tous les éléments de D sont isolés. Montrer que 0 est un point d'accumulation de D.
- 2. Montrer que z est un point d'accumulation de A si et seulement si $z \in \overline{A \setminus \{z\}}$.
- 3. Soit Ω un ouvert non vide de \mathbb{C} . Montrer que tout point de l'adhérence $\overline{\Omega}$ de Ω est un point d'accumulation de Ω .

Exercice 11.: On considère les parties non vides de \mathbb{C} suivantes :

$$A \,:=\, \big\{z \in \mathbb{C}\,;\; \mathrm{Re}\,(z) \in]1;2[\big\}, \quad B \,:=\, \big\{z \in \mathbb{C}^*\,;\; \mathrm{Arg}\,(z) \in]\pi/4;\pi/3[\big\} \quad \mathrm{et} \quad C \,:=\, [-1;1].$$

1. Soit Ω une partie non vide convexe de \mathbb{C} et $z_0 \in \Omega$. Montrer que Ω est étoilé par rapport à z_0 .

- 2. Soit Ω une partie non vide étoilée de \mathbb{C} . Montrer que Ω est connexe par arcs.
- 3. Soit Ω une partie non vide convexe (resp. étoilée) de \mathbb{C} . Montrer que l'adhérence $\overline{\Omega}$ de Ω est convexe (resp. étoilée).
- 4. Montrer que A et C sont convexes.
- 5. Montrer que B est convexe.
- 6. Montrer que la réunion $C \cup D(2; 1[$ n'est pas convexe.
- 7. Montrer que la réunion $B \cup D(0; 1[$ n'est pas convexe.
- 8. Montrer que la réunion $C \cup D(2;1[$ est étoilée.
- 9. Montrer que la réunion $B \cup D(0; 1)$ est étoilée.
- 10. Montrer que la réunion $D(-2; 1[\cup C \cup D(2; 1[$ n'est pas étoilée mais connexe par arcs.
- 11. Montrer que la réunion $A \cup D(0; 1[$ n'est pas connexe par arcs.

Exercice 12. : Intérieur d'un triangle.

Soit $(u, v; w) \in \mathbb{C}^3$ tel que $u \neq v$, $v \neq w$, $w \neq u$ et w n'appartient pas à la droite passant par u et v. Soit T le triangle de sommets u, v et w. On rappelle que T est, par définition, l'ensemble

$$\{z \in \mathbb{C}; \exists (s;t) \in [0;1]^2; z = sv_t + (1-s)u \text{ avec } v_t = tw + (1-t)v\}.$$

Par définition, le bord ∂T de T est la réunion des segments [u;v], [v;w] et [w;u] et l'intérieur de T est l'ensemble $T\setminus \partial T$. On rappelle que, par définition, pour $(a;b)\in \mathbb{C}^2$, le segment [a;b] est l'ensemble

$$\left\{z\in\mathbb{C}\,;\;\exists\,\lambda\in\left[0;1\right];\;z-a\,=\,\lambda\left(b-a\right)\right\}.$$

Soit sgn : $\mathbb{R}^* \longrightarrow \mathbb{R}$ définie par sgn(x) = 1 si x > 0 et sgn(x) = -1 si x < 0.

1. Vérifier que

$$[u;v] = \{z \in \mathbb{C}; \exists s \in [0;1]; z = sv + (1-s)u\}.$$

2. En déduire que

$$\partial T \ = \ \left\{z \in \mathbb{C} \, ; \ \exists \, (s;t) \in \left(\{1\} \times [0;1]\right) \cup \left([0;1] \times \{0;1\}\right) \, ; \ z \ = \ s(tw + (1-t)v) + (1-s)u \, \right\}.$$

3. Soit \mathcal{D}_u la droite passant par u et parallèle à la droite joignant v et w. Montrer que

$$\mathbb{C} \setminus \mathcal{D}_u = \left\{ z \in \mathbb{C} \, ; \, \exists (s;t) \in (\mathbb{R}^* \times \mathbb{R}) \, ; \, z = s(tw + (1-t)v) + (1-s)u \, \right\}.$$

En déduire que $T \cap \mathcal{D}_u = \{u\}$ et $(T \setminus \partial T) \cap \mathcal{D}_u = \emptyset$.

4. Soit $(a; b; c) \in \mathbb{R}^3$ et $f : \mathbb{C} \longrightarrow \mathbb{R}$ définie par, pour $z \in \mathbb{C}$, $f(z) = a \operatorname{Re}(z) + b \operatorname{Im}(z) + c$. Montrer que l'application f - f(0) est \mathbb{R} -linéaire et que

$$\forall (z_1; z_2) \in \mathbb{C}^2, \quad \forall t \in \mathbb{R}, \quad f(tz_1 + (1-t)z_2) = tf(z_1) + (1-t)f(z_2).$$

- 5. Soit $f_1, f_2, f_3 : \mathbb{C} \longrightarrow \mathbb{R}$ trois applications de la forme du 4 telles que la droite passant par u et v est l'ensemble $f_1^{-1}(\{0\})$, la droite passant par v et w est l'ensemble $f_2^{-1}(\{0\})$ et la droite passant par w et u est l'ensemble $f_3^{-1}(\{0\})$. Vérifier $f_1(w) \neq 0$, $f_2(u) \neq 0$ et $f_3(v) \neq 0$.
- 6. Construire $g_1, g_2, g_3 : \mathbb{C} \longrightarrow \mathbb{R}$ trois applications de la forme du 4 telles que la droite passant par u et v est l'ensemble $g_1^{-1}(\{0\})$ et $g_1(w) > 0$, la droite passant par v et w est l'ensemble $g_2^{-1}(\{0\})$ et $g_2(u) > 0$, et la droite passant par w et u est l'ensemble $g_3^{-1}(\{0\})$ et $g_3(v) > 0$.
- 7. Montrer que, pour $z \in (T \setminus \partial T)$, on a $g_1(z) > 0$, $g_2(z) > 0$ et $g_3(z) > 0$.
- 8. Montrer que, pour $z \in \mathbb{C} \setminus ((T \setminus \partial T) \cup \mathcal{D}_u)$, il existe $j \in [1; 3]$ tel que $g_i(z) \leq 0$.
- 9. Montrer que, pour $\lambda \in \mathbb{R}$, $g_1(u + \lambda(v w)) = \lambda g_1(w)$ et $g_3(u + \lambda(v w)) = -\lambda g_3(v)$. En déduire que, pour $z \in \mathcal{D}_u$, on a $g_1(z) \leq 0$ ou $g_3(z) \leq 0$.
- 10. Montrer que l'intérieur $T \setminus \partial T$ du triangle T est l'intersection des ensembles $g_1^{-1}(]0; +\infty[)$, $g_2^{-1}(]0; +\infty[)$ et $g_3^{-1}(]0; +\infty[)$.
- 11. Montrer que l'intérieur $T \setminus \partial T$ du triangle T est l'intersection des ensembles

$$\mathcal{U}_1 := \{ z \in \mathbb{C} \; ; \; f_1(z) \neq 0 \; \text{ et } \; \operatorname{sgn}(f_1(z)) = \operatorname{sgn}(f_1(w)) \} \; ,$$

 $\mathcal{U}_2 := \{ z \in \mathbb{C} \; ; \; f_2(z) \neq 0 \; \text{ et } \; \operatorname{sgn}(f_2(z)) = \operatorname{sgn}(f_2(u)) \} \; ,$
 $\mathcal{U}_3 := \{ z \in \mathbb{C} \; ; \; f_3(z) \neq 0 \; \text{ et } \; \operatorname{sgn}(f_3(z)) = \operatorname{sgn}(f_3(v)) \} \; .$

- 12. Montrer que $T \setminus \partial T$ est un ouvert convexe.
- 13. Montrer que T est un fermé convexe.
- 14. Soit $z \in \partial T$. Montrer que z n'appartient pas à l'intérieur \mathring{T} de T.

Remarque : Comme T est fermé (cf. 16), l'adhérence \overline{T} de T est donc T. Comme $T \setminus \partial T$ est ouvert (cf. 16), $T \setminus \partial T \subset \mathring{T}$, l'intérieur de T. Comme $\mathring{T} \subset T$ et comme, d'après 17, $\mathring{T} \cap \partial T = \emptyset$, $\mathring{T} = T \setminus \partial T$. Au sens de la topologie, le bord de T est $\overline{T} \setminus \mathring{T}$ qui est bien égale à ∂T .

Si l'on prend $(u; v; w) \in \mathbb{C}^3$ avec $u \neq v$ et w appartenant à la droite passant par u et v, on constate que T est un segment de \mathbb{C} , que $T = \partial T$ est fermé et l'intérieur de T est vide. Il en est de même si l'on prend $(u; v; w) \in \mathbb{C}^3$ tel que deux au moins sont égaux.