Intégrales le long d'un chemin et holomorphie.

On admet que la fonction exponentielle complexe $\exp: \mathbb{C} \longrightarrow \mathbb{C}$ est holomorphe et que sa \mathbb{C} -dérivée est elle-même.

Exercice 13.: Soit $a \in \mathbb{C}$. Montrer que l'application $\mathbb{R} \ni t \mapsto \exp(at)$ est C^1 et que sa dérivée est $\mathbb{R} \ni t \mapsto a \exp(at)$.

Exercice 14. : On considère les fonctions suivantes :

On note par \mathcal{U} le cercle unité centré en 0 de \mathbb{C} : $\mathcal{U} := \{z \in \mathbb{C}; |z| = 1\}$.

- 1. Montrer que, pour $j \in [1; 8]$, l'image de γ_j est égale à \mathcal{U} .
- 2. Vérifier que $\gamma_1, \gamma_2, \gamma_3, \gamma_5$ et γ_6 parcourent \mathcal{U} dans le sens trigonométrique positif.
- 3. La courbe paramétrée γ_7 parcourt-t-elle \mathcal{U} dans le sens trigonométrique positif ? dans le sens trigonométrique négatif ?
- 4. Même questions pour la courbe paramétrée γ_8 .

Exercice 15.: Soit Ω un ouvert non vide de \mathbb{C} et $f:\Omega\longrightarrow\mathbb{C}$ une application continue. Soit $(a;b)\in\mathbb{R}^2$ avec $a\leq b$ et $\gamma:[a;b]\longrightarrow\Omega$ un chemin. Montrer que

$$\left| \int_{\gamma} f(z) dz \right| \leq L(\gamma) \cdot \sup_{t \in [a;b]} |f(t)|.$$

Exercice 16. : Soit Ω un ouvert non vide de \mathbb{C} et $f:\Omega \longrightarrow \mathbb{C}$ une application continue. Soit $(a_1;b_1;a_2;b_2) \in \mathbb{R}^4$ tel que $a_1 < b_1$ et $a_2 < b_2$. Soit $\gamma_1:[a_1;b_1] \longrightarrow \Omega$ et $\gamma_2:[a_2;b_2] \longrightarrow \Omega$ deux chemins, c'est-à-dire des applications continues et C^1 par morceaux.

1. On suppose γ_2 est C^1 . Soit $\varphi: [a_1; b_1] \longrightarrow [a_2; b_2]$ bijective et C^1 . On pose $\psi = \gamma_2 \circ \varphi$ (qui est aussi un chemin C^1). Montrer que

$$\int_{\psi} f(z) dz = \int_{\varphi(a_1)}^{\varphi(b_1)} f(\gamma_2(s)) \gamma_2'(s) ds.$$

- 2. Vérifier que le résultat du 1 est encore valable si γ_2 est seulement C^1 par morceaux.
- 3. On suppose que γ_1 est équivalent à γ_2 . Montrer que

$$\int_{\gamma_1} f(z) dz := \int_{\gamma_2} f(z) dz.$$

4. On suppose que γ_1 est opposé à γ_2 . Montrer que

$$\int_{\gamma_1} f(z) dz := - \int_{\gamma_2} f(z) dz.$$

- 5. On suppose γ_1 équivalent ou opposé à γ_2 . Montrer que $L(\gamma_1) = L(\gamma_2)$.
- 6. On suppose que $\gamma_1(b_1) = \gamma_2(a_2)$. On considère l'application

$$\gamma : [0;1] \longrightarrow \mathbb{C}$$
 $t \mapsto \gamma_1 ((1-2t)a_1 + 2tb_1) \quad \text{si } t \leq (1/2),$
 $\gamma_2 (2(1-t)a_2 + (2t-1)b_2) \quad \text{si } t > (1/2).$

Par définition, γ est une concaténation de γ_1 et γ_2 (dans cet ordre), notée $\gamma_1 + \gamma_2$. Montrer que γ est un chemin.

7. Montrer que

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz.$$

8. On suppose que $\gamma_1(b_1) = \gamma_1(a_1)$. On construit par récurrence une suite $(\gamma_n)_{n \in \mathbb{N}^*}$ de chemins fermés vérifiant : pour tout $n \in \mathbb{N}^*$, $\gamma_{n+1} = \gamma_n + \gamma_1$. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \int_{\gamma_n} f(z) dz = n \int_{\gamma_1} f(z) dz.$$

Exercice 17. : On considère les courbes paramétrées :

$$\gamma_1: [0; 2\pi] \longrightarrow \mathbb{C}^* \qquad \gamma_2: [0; \pi] \longrightarrow \mathbb{C}^* \\ t \mapsto \exp(it), \qquad t \mapsto \exp(it), \text{ si } t \leq (\pi/2), \\ \frac{2}{\pi}(1-i)t + 2i - 1, \text{ si } t > (\pi/2).$$

Soit $\gamma_3: [-\pi; \pi] \longrightarrow \mathbb{C}^*$ définie par $\gamma_3(t) = \exp(-it)$.

1. Montrer que γ_1 et γ_2 sont continus, C^1 par morceaux, simples et fermés (ce sont donc des lacets). Vérifier qu'ils ont les même extrémités, c'est-à-dire que $\gamma_1(0) = \gamma_2(0) = \gamma_1(2\pi) = \gamma_2(\pi)$.

2. Calculer explicitement les intégrales

$$\int_{\gamma_1} \frac{\mathrm{d}z}{z} \quad \text{et} \quad \int_{\gamma_2} \frac{\mathrm{d}z}{z} \ .$$

3. Vérifier que les intégrales

$$\int_{\gamma_1} \frac{\mathrm{d}z}{z}$$
 et $\int_{\gamma_2} \frac{\mathrm{d}z}{z}$

sont opposées.

4. Vérifier que γ_3 est opposé à γ_1 . D'après le cours, ceci redonne le résultat du 3.

5. Soit $\gamma_4: [2\pi; 4\pi] \longrightarrow \mathbb{C}$ défini par $\gamma_4(t) = \exp(-it)$. Soit $\Gamma: [0; 4\pi] \longrightarrow \mathbb{C}$ la concaténation de γ_1 et γ_4 . Montrer que

$$\int_{\Gamma} \frac{\mathrm{d}z}{z} = 0.$$

6. Comparer les quantités réelles

$$\left| \int_{\gamma_1} \frac{\mathrm{d}z}{z} \right| \quad \text{et} \quad L(\gamma_1) \cdot \sup_{z \in \gamma_1([0;2\pi])} \left| \frac{1}{z} \right| ,$$

où $L(\gamma_1)$ désigne la longueur de γ_1 .

Exercice 18. : On considère les courbes paramétrées

$$\gamma_1: [0;1] \longrightarrow \mathbb{C}
t \mapsto ti+1-t, \qquad \gamma_2: [0;1] \longrightarrow \mathbb{C}
t \mapsto -t+(1-t)i,$$

$$\gamma_3: [0;1] \longrightarrow \mathbb{C} \qquad \gamma_4: [0;1] \longrightarrow \mathbb{C}
t \mapsto -ti - (1-t), \qquad t \mapsto t - i(1-t),$$

Soit γ la concaténation des chemins γ_1 , γ_2 , γ_3 et γ_4 , dans cet ordre.

1. Pour $j \in [1; 4]$, déterminer explicitement

$$\int_{\gamma_j} \exp(z) \, \mathrm{d}z .$$

2. En déduire que

$$\int_{\gamma} \exp(z) \, \mathrm{d}z = 0.$$

3. Retrouver ce dernier résultat d'une autre façon.

Exercice 19. : On considère les courbes paramétrées suivantes :

Pour $z \in \mathbb{C}$, on pose

$$\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2} \quad \text{et} \quad \sin(z) = \frac{\exp(iz) - \exp(-iz)}{2i}.$$

- 1. Vérifier que cos et sin sont holomorphes sur \mathbb{C} . Déterminer leur dérivée.
- 2. Calculer les intégrales

$$\int_{\gamma_1} \cos(z) dz$$
, $\int_{\gamma_2} \cos(z) dz$ et $\int_{\gamma_3} \cos(z) dz$.

- 3. Vérifier que γ_4 est de classe C^1 . Déterminer $\gamma_4(-\pi/2)$ et $\gamma_4(\pi/2)$.
- 4. En déduire la valeur de l'intégrale

$$\int_{\gamma_4} \cos(z) \, \mathrm{d}z.$$

Exercice 20.: Soit Ω un ouvert non vide de \mathbb{C} et $f,g:\Omega\longrightarrow\mathbb{C}$ holomorphes. Soit $\gamma:[0;1]\longrightarrow\Omega$ un chemin. Montrer que

$$\int_{\gamma} f'(z) g(z) dz = f(\gamma(1)) g(\gamma(1)) - f(\gamma(0)) g(\gamma(0)) - \int_{\gamma} f(z) g'(z) dz.$$

Exercice 21.: Soit Ω un ouvert non vide de \mathbb{C} , $z_0 \in \Omega$ et $f, g : \Omega \longrightarrow \mathbb{C}$ holomorphes en z_0 telles que $f(z_0) = g(z_0) = 0$ et $g'(z_0) \neq 0$. Montrer que f/g tend, quand $z \to z_0$, vers $f'(z_0)/g'(z_0)$.

Application: montrer l'existence et déterminer

$$\lim_{z \to i} \frac{z^{12} + 2z^2 + 1}{z^8 - 1} \,.$$

Exercice 22.: Montrer que la conjugaison $\bar{\cdot}$ et les fonctions partie réelle Re et partie imaginaire Im sont \mathbb{R} -linéaires mais pas \mathbb{C} -linéaires. Donner la matrice dans la base canonique (1;i) du \mathbb{R} -espace vectoriel \mathbb{C} de chacune d'elles. En déduire qu'elles sont nulle part holomorphes.

Exercice 23.: Soit $f, g: \mathbb{C} \longrightarrow \mathbb{C}$ définie par $f(x; y) = x^2 - y^2 + 1 + 2ixy$ et $g(x; y) = x^2 + y^2 + 1 + 2ixy$.

- 1. Montrer que Re f, Im f, Re g et Im g sont C^1 .
- 2. Montrer que f est holomorphe sur \mathbb{C} .
- 3. La fonction q est-elle holomorphe sur \mathbb{C} ?

Exercice 24.: Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$ définie par $f(z) = \operatorname{Re}(z) + i(\operatorname{Im}(z))^2$.

- 1. Montrer que f est C^1 . Déterminer sa différentielle.
- 2. Existe-t-il un ouvert non vide Ω de \mathbb{C} sur lequel f est holomorphe?

Exercice 25. : Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$ différentiable. Soit $P = \operatorname{Re} f$ et $Q = \operatorname{Im} f$. On rappelle que l'on a posé

$$\frac{\partial f}{\partial x} := \frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x}, \quad \frac{\partial f}{\partial y} := \frac{\partial P}{\partial y} + i \frac{\partial Q}{\partial y},$$

$$\frac{\partial f}{\partial z} := \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \quad \text{et} \quad \frac{\partial f}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

- 1. Déterminer $\partial f/\partial z$ et $\partial f/\partial \overline{z}$ pour $f \in \{f_1; f_2; f_3; f_4\}$, où $f_1(z) = z$, $f_2(z) = \overline{z}$, $f_3(z) = z^2$ et $f_4(z) = \overline{z}^2$.
- 2. Soit $g, h : \mathbb{C} \longrightarrow \mathbb{C}$ différentiables. Exprimer $\partial(gh)/\partial z$ et $\partial(gh)/\partial \overline{z}$ en fonction de $\partial g/\partial z$, $\partial g/\partial \overline{z}$, $\partial h/\partial z$ et $\partial h/\partial \overline{z}$.
- 3. Pour $(m;n) \in \mathbb{N}^2$, soit $f_{m;n} : \mathbb{C} \longrightarrow \mathbb{C}$ définie par $f_{m;n}(z) = z^m \overline{z}^n$. Donner une expression de $\partial f_{m;n}/\partial z$ et de $\partial f_{m;n}/\partial \overline{z}$.
- 4. Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$ holomorphe. Montrer que P et Q sont des polynômes en (x; y) si et seulement si f est un polynômes de z.

Exercice 26.: Soit $(a;b;c) \in \mathbb{R}^3$ et $P:\mathbb{C} \longrightarrow \mathbb{R}$ définie par $P(x;y) = ax^2 + 2bxy + cy^2$.

- 1. On suppose qu'il existe une fonction holomorphe $f:\mathbb{C}\longrightarrow\mathbb{C}$ telle que $P=\mathrm{Re}\,f$. Montrer que c=-a.
- 2. On suppose que c=-a. Trouver toutes les fonctions holomorphes $f:\mathbb{C}\longrightarrow\mathbb{C}$ telle que $P=\operatorname{Re} f$.

Exercice 27.: Soit Ω un domaine non vide de \mathbb{C} et $f:\Omega \longrightarrow \mathbb{C}$ une fonction holomorphe. Soit $P = \operatorname{Re} f$ et $Q = \operatorname{Im} f$. On suppose qu'il existe $(a;b) \in (\mathbb{R}^2 \setminus \{(0;0)\})$ et $c \in \mathbb{R}$ tels que aP + bQ + c = 0 sur Ω . Montrer que f est constante.

Exercice 28.: Soit Ω un domaine non vide de \mathbb{C} et $f:\Omega\longrightarrow\mathbb{C}$ une fonction holomorphe. Soit $P=\operatorname{Re} f$ et $Q=\operatorname{Im} f$. Montrer que les propriétés suivantes sont équivalentes :

- a). f est constante.
- b). P est constante.
- c). Q est constante.
- d). \overline{f} est holomorphe.
- e). |f| est holomorphe.

(Indication : on pourra montrer que chaque propriété est équivalente à la propriété a).) **Remarque :** si f est à valeurs réelles alors Q est nulle donc constante et, par les équivalences, f est constante.

Exercice 29.: On pourra utiliser les résultats de l'exercice 28. Soit Ω un domaine non vide de \mathbb{C} et soit $f,g:\Omega\longrightarrow\mathbb{C}$ deux fonctions holomorphes.

- 1. On suppose que f ne s'annule pas et que, pour tout $z \in \Omega$, |f(z)| = |g(z)|. Montrer qu'il existe $\theta \in \mathbb{R}$ tel que, pour tout $z \in \Omega$, $g(z) = \exp(i\theta)f(z)$.
- 2. On suppose que f ne s'annule pas et que, pour tout $z \in \Omega$, $f(z)g(z) \in \mathbb{R}$. Montrer qu'il existe $c \in \mathbb{R}$ tel que, pour tout $z \in \Omega$, g(z) = cf(z).

Exercice 30.: Soit $\underline{f}:\mathbb{C}\longrightarrow\mathbb{C}$ holomorphe. Soit $g:\mathbb{C}\longrightarrow\mathbb{C}$ et $h:\mathbb{C}\longrightarrow\mathbb{C}$ définies par $g(z)=\overline{z}$ et $h(z)=\overline{f(\overline{z})}$. On a vu dans l'exercice 22 que g est nulle part holomorphe.

- 1. Montrer que g et h sont continues sur \mathbb{C} .
- 2. Montrer que g et h sont différentiables sur \mathbb{C} .
- 3. Montrer que h est holomorphe.

Exercice 31. : Paramétrages d'un triangle.

On reprend les notations de l'exercice 12. On dit que (u; v; w) est une énumération des sommets de ∂T dans le sens positif si la seconde composante de w dans le repère orthogonal (u; v - u; i(v - u)) est strictement positive.

Soit \mathcal{P}_{vw} l'ensemble des applications continues $\gamma:[a;b] \longrightarrow \mathbb{C}$, avec $(a;b) \in \mathbb{R}^2$ et a < b, telles que :

- a). $\gamma(a) = \gamma(b) = u$ et $\gamma([a; b]) = \partial T$.
- b). Il existe $(t_1; t_2) \in]a; b[^2 \text{ avec } t_1 < t_2 \text{ tel que } \gamma(t_1) = v \text{ et } \gamma(t_2) = w.$
- c). Sur $]a;t_1[$, γ est dérivable et sa dérivée γ' se prolonge par continuité sur $[a;t_1]$. Sur $]t_1;t_2[$, γ est dérivable et sa dérivée γ' se prolonge par continuité sur $[t_1;t_2]$. Sur $]t_2;b[$, γ est dérivable et sa dérivée γ' se prolonge par continuité sur $[t_2;b]$. La dérivée γ' ne s'annule pas.

On définit de même \mathcal{P}_{wv} en échangeant les sommets v et w.

1. Montrer que la droite \mathcal{D} passant par u et v est donnée par

$$\mathcal{D} = \left\{ z \in \mathbb{C} ; \operatorname{Re} \left((z - u) \overline{i(v - u)} \right) = 0 \right\}.$$

2. Vérifier que la seconde composante de w dans le repère orthogonal

$$(u; v-u; i(v-u))$$

est non nulle.

- 3. On suppose que (u; v; w) n'est pas une énumération des sommets de ∂T dans le sens positif. Montrer que (u; w; v) en est une. (Indication : on pourra utiliser la matrice de passage de la base (v - u; i(v - u)) à
- 4. Soit $\gamma_{vw}:[0;3]\longrightarrow \mathbb{C}$ définie par

la base (w-u;i(w-u)).)

$$\gamma_{vw}(t) = u + t(v - u) \quad \text{si} \quad t \in [0; 1[, \\ = v + (t - 1)(w - v) \quad \text{si} \quad t \in [1; 2[, \\ = w + (t - 2)(u - w) \quad \text{si} \quad t \in [2; 3].$$

Vérifier que $\gamma_{vw} \in \mathcal{P}_{vw}$.

En échangeant les sommets v et w, on construit de même un paramétrage γ_{wv} appartenant à \mathcal{P}_{wv} .

5. Soit $\gamma \in \mathcal{P}_{vw}$. Montrer que γ est un lacet, c'est-à-dire que la restriction $\gamma_{|[a;b[}$ de γ à [a;b[est injective.

En particulier, le couple $(t_1; t_2)$ vérifiant la condition b) est unique.

En échangeant les sommets v et w, on obtient le même résultat pour $\gamma \in \mathcal{P}_{wv}$.

6. Soit $(\gamma; \tilde{\gamma}) \in \mathcal{P}^2_{vw}$. Soit $(a; t_1; t_2; b) \in \mathbb{R}^3$ tel que $a < t_1 < t_2 < b, \gamma : [a; b] \longrightarrow \mathbb{C}$, $\gamma(t_1) = v$ et $\gamma(t_2) = w$. Soit $(\tilde{a}; \tilde{t}_1; \tilde{t}_2; \tilde{b}) \in \mathbb{R}^3$ tel que $\tilde{a} < \tilde{t}_1 < \tilde{t}_2 < \tilde{b}, \tilde{\gamma} : [\tilde{a}; \tilde{b}] \longrightarrow \mathbb{C}$, $\tilde{\gamma}(\tilde{t}_1) = v$ et $\tilde{\gamma}(\tilde{t}_2) = w$. Montrer qu'il existe des bijections strictement croissantes, de classe C^1 , $\varphi_1 : [a; t_1] \longrightarrow [\tilde{a}; \tilde{t}_1]$, $\varphi_2 : [t_1; t_2] \longrightarrow [\tilde{t}_1; \tilde{t}_2]$ et $\varphi_3 : [t_2; b] \longrightarrow [\tilde{t}_2; \tilde{b}]$ telles que

$$\begin{array}{lll} \gamma(t) & = & \tilde{\gamma}\big(\varphi_1(t)\big) & \text{pour} & t \in [a;t_1] \,, \\ \gamma(t) & = & \tilde{\gamma}\big(\varphi_2(t)\big) & \text{pour} & t \in [t_1;t_2] \,, \\ \gamma(t) & = & \tilde{\gamma}\big(\varphi_3(t)\big) & \text{pour} & t \in [t_2;b] \,. \end{array}$$

En échangeant les sommets v et w, on obtient le même résultat pour $(\gamma; \tilde{\gamma}) \in \mathcal{P}^2_{wv}$.

7. Soit $(\gamma; \tilde{\gamma}) \in \mathcal{P}_{vw} \times \mathcal{P}_{wv}$. Soit $(a; t_1; t_2; b) \in \mathbb{R}^3$ tel que $a < t_1 < t_2 < b, \gamma : [a; b] \longrightarrow \mathbb{C}$, $\gamma(t_1) = v$ et $\gamma(t_2) = w$. Soit $(\tilde{a}; \tilde{t}_1; \tilde{t}_2; \tilde{b}) \in \mathbb{R}^3$ tel que $\tilde{a} < \tilde{t}_1 < \tilde{t}_2 < \tilde{b}, \tilde{\gamma} : [\tilde{a}; \tilde{b}] \longrightarrow \mathbb{C}$, $\tilde{\gamma}(\tilde{t}_1) = w$ et $\tilde{\gamma}(\tilde{t}_2) = v$. Montrer qu'il existe des bijections strictement décroissantes, de classe C^1 , $\varphi_1 : [a; t_1] \longrightarrow [\tilde{t}_2; \tilde{b}]$, $\varphi_2 : [t_1; t_2] \longrightarrow [\tilde{t}_1; \tilde{t}_2]$ et $\varphi_3 : [t_2; b] \longrightarrow [\tilde{a}; \tilde{t}_1]$ telles que

$$\begin{array}{lll} \gamma(t) & = & \tilde{\gamma}\big(\varphi_1(t)\big) & \text{pour} & t \in [a;t_1] \,, \\ \gamma(t) & = & \tilde{\gamma}\big(\varphi_2(t)\big) & \text{pour} & t \in [t_1;t_2] \,, \\ \gamma(t) & = & \tilde{\gamma}\big(\varphi_3(t)\big) & \text{pour} & t \in [t_2;b] \,. \end{array}$$

Lorsque (u; v; w) est une énumération des sommets de ∂T dans le sens positif, on dit qu'un paramétrage $\gamma \in \mathcal{P}_{vw}$ est un paramétrage du bord ∂T de T dans le sens positif. Les paramétrages de \mathcal{P}_{wv} sont des paramétrages du bord ∂T de T dans le sens négatif.

Lorsque (u; w; v) est une énumération des sommets de ∂T dans le sens positif, on reprend la définition précédente en échangeant v et w.

Exercice 32. : Longueur d'une courbe paramétrée continue.

Soit $(a;b) \in \mathbb{R}^2$ tel que a < b. Soit $\gamma : [a;b] \longrightarrow \mathbb{C}$ une fonction continue. On note par \mathcal{I} l'image $\gamma([a;b])$ de γ . On définit ici une notion de longueur pour γ et on envisage une notion similaire pour \mathcal{I} .

Pour $n \in \mathbb{N}^*$, on appelle subdivision de [a; b[de taille n toute application strictement croissante $\sigma : [1; n] \longrightarrow [a; b[$. Pour une telle application σ , on note, pour tout $j \in [1; n]$, $\sigma_j := \sigma(j)$. Soit \mathcal{S}_n l'ensemble de telles subdivisions de taille n et

$$S = \bigcup_{n \in \mathbb{N}} S_n$$

l'ensemble de toutes les subdivisions de [a; b[.

Pour tout $n \in \mathbb{N}^*$ et $\sigma \in \mathcal{S}_n$, on appelle ligne brisée portée par \mathcal{I} à n morceaux de subdivision σ la famille $\mathcal{P} = (\gamma(\sigma_j))_{j \in \llbracket 1;n \rrbracket}$ de points de \mathcal{I} . Pour une telle famille \mathcal{P} , en posant $\sigma_{n+1} := b$, le morceau d'incide j, avec $j \in \llbracket 1;n \rrbracket$, de \mathcal{P} est le segment complexe reliant $\gamma(\sigma_j)$ à $\gamma(\sigma_{j+1})$. La longueur de ce segment est

$$\left|\gamma(\sigma_{j+1}) - \gamma(\sigma_j)\right| \geq 0.$$

La longueur d'une ligne brisée portée par \mathcal{I} à n morceaux de subdivision $\sigma \in \mathcal{S}_n$ est, par définition, la somme des longueurs de ces morceaux, c'est-à-dire

$$L(\sigma) := \sum_{j=1}^{n} |\gamma(\sigma_{j+1}) - \gamma(\sigma_{j})| \geq 0.$$

On définit la longueur $L(\gamma)$ de γ par $L(\gamma) := \sup\{L(\sigma); \sigma \in \mathcal{S}\} \in (\mathbb{R}^+ \cup \{+\infty\}).$

1. Soit σ et τ deux subdivisions de [a;b[de taille m et n, respectivement. On dit que " σ est incluse dans τ ", on note $\sigma\subset \tau$, si $m\leq n$ et

$$\forall j \in [1; m], \exists k \in [1; n]; \ \sigma_j = \tau_k.$$

Vérifier, dans ce cas, que $L(\sigma) < L(\tau)$.

2. Soit $(a_1; b_1) \in [a; b]^2$ et $(a_2; b_2) \in [a; b]^2$ tels que $a_1 < b_1$ et $a_2 < b_2$. Soit $\sigma^{(1)}$ une subdivision de $[a_1; b_1[$ de taille $n_1 \in \mathbb{N}^*$ et $\sigma^{(2)}$ une subdivision de $[a_2; b_2[$ de taille $n_2 \in \mathbb{N}^*$.

Vérifier que la réunion des images de $\sigma^{(1)}$ et de $\sigma^{(2)}$ est un ensemble fini U de points de $[\min(a_1; a_2); \max(b_1; b_2)]$ de cardinal p vérifiant $\max(n_1; n_2) \leq p \leq n_1 + n_2$. Dans quel cas a-t-on $p = n_1 + n_2$?

En numérotant dans cet ensemble U dans l'ordre croissant des entiers naturels, on obtient une subdivision de $[\min(a_1; a_2); \max(b_1; b_2)[$, notée $\sigma \cup \tau$, appelée la réunion de σ et τ . Cette subdivision $\sigma \cup \tau$ est donc l'application qui, à $j \in [1; p]$ associe le j-ième élément de U.

Montrer que $\max(L(\sigma); L(\tau)) \leq L(\sigma \cup \tau)$.

3. Soit $p \in \mathbb{N}^*$ et $\sigma \in \mathcal{S}_p$. Pour $k \in [1; p]$, on considère une subdivision $\sigma^{(k)}$ de $[\sigma_k; \sigma_{k+1}]$ de taille $n_k \in \mathbb{N}^*$ et on pose \mathcal{I}_k l'image de la restriction $\gamma_{|[\sigma_k;\sigma_{k+1}]}$ de γ à $[\sigma_k; \sigma_{k+1}]$. Par une récurrence finie basée sur le point 2, on définit $\tau = \bigcup_{k \in [1;p]} \sigma^{(k)}$, la réunion des subdivisions $\sigma^{(k)}$. C'est une subdivision de

$$\left[\min_{k \in [1;p]} \sigma_k \, ; \, \max_{k \in [1;p]} \sigma_k \right] = \left[\sigma_1 ; \sigma_p \right] \subset \left[a; b \right[.$$

a). Montrer que

$$L(\tau) = \sum_{k=1}^{p} L(\sigma^{(k)}).$$

b). En déduire que

$$L(\gamma) \leq \sum_{k=1}^{p} L(\gamma_{|[\sigma_k;\sigma_{k+1}]}).$$

c). Montrer que

$$L(\gamma) = \sum_{k=1}^{p} L(\gamma_{|[\sigma_k;\sigma_{k+1}]}).$$

- 4. On suppose que γ est de classe C^1 sur [a;b].
 - a). Montrer que $L(\gamma)$ est finie et que

$$L(\gamma) \leq \int_a^b |\gamma'(t)| dt$$
.

b). Pour $n \in \mathbb{N}^*$, on définit la subdivision $\sigma^{(n)}$ de [a; b[par $\sigma^{(n)} : [1; n]] \longrightarrow [a; b[$ avec, pour $j \in [1; n]$,

$$\sigma_j^{(n)} := a + (j-1)\frac{b-a}{n}.$$

Vérifier que la suite $(L(\sigma^{(n)}))_{n\in\mathbb{N}^*}$ est une somme de Riemann associée à l'intégrale apparaissant dans le a).

c). En déduire que

$$L(\gamma) = \int_a^b |\gamma'(t)| \, \mathrm{d}t \,. \tag{3}$$

- 5. On suppose que γ est continue et de classe C^1 par morceaux sur [a;b]. Par définition, γ est continue et il existe $n_0 \in \mathbb{N}^*$ et une subdivision $\sigma^{(0)} : [1; n_0]] \longrightarrow [a;b[$ de [a;b[telle que, pour tout $j \in [1;n_0]]$, la restriction de γ à $]\sigma_j^{(0)};\sigma_{j+1}^{(0)}[$ est dérivable et la restriction de la dérivée γ' à $]\sigma_j^{(0)};\sigma_{j+1}^{(0)}[$ se prolonge par continuité en $\sigma_j^{(0)}$ et en $\sigma_{j+1}^{(0)}$. On pose $\sigma_{n_0+1}^{(0)} = b$.
 - a). Pour $j \in [1; n_0]$, on note γ_j la restriction de γ à $[\sigma_j^{(0)}; \sigma_{j+1}^{(0)}]$. Vérifier que γ_j est de classe C^1 sur $[\sigma_j^{(0)}; \sigma_{j+1}^{(0)}]$ et les dérivées $(\gamma_j)'$ et γ' coïncident sur $]\sigma_j^{(0)}; \sigma_{j+1}^{(0)}[$.
 - b). Montrer que

$$L(\gamma) = \sum_{j=1}^{n_0} L(\gamma_j) = \sum_{j=1}^{n_0} \int_{\sigma_j^{(0)}}^{\sigma_{j+1}^{(0)}} |(\gamma_j)'(t)| dt.$$
 (4)

c). On suppose que f admet une primitive F sur Ω . Montrer que, pour $j \in [1; n_0]$,

$$\int_{\gamma_j} f(z) dz = F\left(\gamma_j\left(\sigma_{j+1}^{(0)}\right)\right) - F\left(\gamma_j\left(\sigma_j^{(0)}\right)\right).$$

En déduire que

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a)).$$

Remarque : On s'est attaché dans cet exercice à définir la longueur de γ . On souhaite définir aussi la longueur de $\mathcal{I} = \gamma([a;b])$, l'image de γ . Pour ce faire, des précautions s'imposent comme le montre l'exemple suivant.

Soit $(z_1; z_2) \in \mathbb{C}^2$ avec $z_1 \neq z_2$. Soit $\gamma : [a; b] \longrightarrow \mathbb{C}$ est une fonction continue telle que la restriction $\gamma_{|[a;c]}$ de γ à [a;c] (avec a < c < b) soit un paramétrage dans un certain sens du segment $[z_1; z_2]$ et telle que la restriction $\gamma_{|[c;b]}$ de γ à [c;b] soit un paramétrage du même segment $[z_1; z_2]$ mais parcouru dans l'autre sens. Alors $\mathcal{I} = [z_1; z_2]$ mais $L(\gamma)$ est deux fois la longueur $|z_1 - z_2|$ du segment $[z_1; z_2]$.

On suppose que la restriction de γ à [a;b[est injective. Dans ce cas, il est naturel de définir la longueur de \mathcal{I} par $L(\gamma)$. Mais est-on sûr que, pour toute courbe $\tau:[c;d] \longrightarrow \mathbb{C}$ continue telle que $\tau([c;d]) = \mathcal{I}$ et telle que la restriction de τ à [c;d[soit injective, on a bien $L(\tau) = L(\gamma)$? Lorsque de telles courbes γ et τ sont des chemins équivalents ou bien opposés, on verra dans l'exercice 16 que $L(\gamma) = L(\tau)$. Mais est-on sûr que de tels chemins γ et τ sont forcément équivalents ou opposés ? Ce n'est pas clair du tout.

Exercice 33.: Soit Ω un ouvert non vide connexe par arcs de \mathbb{C} . On montre ici que Ω est connexe par lignes polygônales. Si $\Omega = \mathbb{C}$, le résultat est clairement vrai. On se restreint au cas où $\mathbb{C} \setminus \Omega \neq \emptyset$.

Soit $(a;b) \in \mathbb{R}^2$ avec a < b et $\gamma : [a;b] \longrightarrow \Omega$ une courbe paramétrée continue. On dit que γ est uniformément continue sur [a;b] si

$$\forall \epsilon > 0, \quad \exists \delta > 0; \quad \forall (t; t') \in [a; b]^2, \quad \left(|t - t'| < \delta \implies |\gamma(t) - \gamma(t')| < \epsilon \right). \tag{5}$$

Comme [a;b] est compact et γ est continue, on sait, par le cours, que $\gamma([a;b])$ est compact.

1. On suppose que (5) est fausse. Soit $\epsilon > 0$ tel que la proposition

$$\exists \delta > 0; \quad \forall (t; t') \in [a; b]^2, \quad (|t - t'| < \delta \implies |\gamma(t) - \gamma(t')| < \epsilon)$$

soit fausse.

- a). Montrer que, pour tout $n \in \mathbb{N}^*$, il existe $(t_n; t'_n) \in [a; b]^2$ tel que $|t_n t'_n| < (1/n)$ et $|\gamma(t_n) \gamma(t'_n)| \ge \epsilon$.
- b). La suite $(t_n)_n$ étant une suite dans le compact [a;b], elle admet une sous-suite $(t_{\varphi(n)})_n$ convergeant vers un certain $\ell \in [a;b]$. Montrer que la suite $(t'_{\varphi(n)})_n$ converge aussi vers ℓ .
- c). Établir une contradiction en utilisant la continuité de γ en ℓ .

On a donc montré par l'absurde que (5) est vraie.

2. Soit $(a;b) \in \mathbb{R}^2$ avec a < b et $\gamma : [a;b] \longrightarrow \Omega$ une courbe paramétrée continue. On pose $\Gamma = \gamma([a;b])$,

$$A := \{ |\gamma(t) - z| ; t \in [a; b], z \in \mathbb{C} \setminus \Omega \} \subset \mathbb{R}^+ \text{ et } \rho := \inf A.$$

Par une propriété de la borne inférieure, on sait qu'il existe une suite $(t_n)_n$ d'éléments de [a;b] et une suite $(z_n)_n$ d'éléments de $\mathbb{C} \setminus \Omega$ telles que la suite $(|\gamma(t_n) - z_n|)_n$ tende vers ρ .

- a). La suite $(t_n)_n$ étant une suite dans le compact [a;b], elle admet une sous-suite $(t_{\varphi(n)})_n$ convergeant vers un certain $\ell \in [a;b]$. Montrer que la sous-suite $(z_{\varphi(n)})_n$ de $(z_n)_n$ est bornée.
- b). En déduire qu'il existe une extractrice $\psi : \mathbb{N} \longrightarrow \mathbb{N}$ telle que $(t_{\psi(n)})_n$ converge vers ℓ et $(z_{\psi(n)})_n$ converge vers un certain $z \in \mathbb{C} \setminus \Omega$.
- c). Montrer que $\rho > 0$.
- 3. Construire une suite finie strictement croissante $(t_k)_{0 \le k \le m}$ d'éléments de [a; b] telle que $t_0 = a$, $t_m = b$ et, pour tout $0 \le k \le m 1$,

$$\sup_{(t;t')\in[t_k;t_{k+1}]^2} \left| \gamma(t) - \gamma(t') \right| < \rho.$$

(Indication: on pourra utiliser (5).)

4. Soit $\Gamma:[a;b]\longrightarrow\mathbb{C}$ définie de la façon suivante : pour $t\in[a;b[$, il existe un unique $0\leq k\leq m-1$ tel que $t\in[t_k;t_{k+1}[$ et on pose

$$\Gamma(t) := \gamma(t_k) + \frac{t - t_k}{t_{k+1} - t_k} \cdot (\gamma(t_{k+1}) - \gamma(t_k)).$$

Pour t = b, on pose $\Gamma(b) = \gamma(b)$. Vérifier que Γ est un chemin polygônal joignant $\gamma(a)$ à $\gamma(b)$ et dont l'image est incluse dans Ω .

Soit $(z;z') \in \Omega^2$. Puisque Ω est connexe par arcs, il existe une courbe paramétrée continue $\gamma:[a;b] \longrightarrow \Omega$ telle que $\gamma(a)=z$ et $\gamma(b)=z'$. D'après les questions précédentes, il existe un chemin polygônal à valeurs dans Ω joignant $\gamma(a)=z$ à $\gamma(b)=z'$. Ceci montre que Ω est connexe par lignes polygônales.